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Abstract

We propose a general semi-supervised inference framework focused on the estima-

tion of the population mean. We consider both the ideal semi-supervised setting where

infinitely many unlabeled samples are available, as well as the ordinary semi-supervised

setting in which only a finite number of unlabeled samples is available. As usual in

semi-supervised settings, there exists an unlabeled sample of covariate vectors and a

labeled sample consisting of covariate vectors along with real-valued responses (“la-

bels”). Otherwise the formulation is “assumption-lean” in that no major conditions

are imposed on the statistical or functional form of the data. Estimators are proposed

along with corresponding confidence intervals for the population mean. Theoretical

analysis on both the asymptotic behavior and `2-risk for the proposed procedures are

given. Surprisingly, the proposed estimators, based on a simple form of the least squares

method, outperform the ordinary sample mean. The method is further extended to a

nonparametric setting, in which the oracle rate can be achieved asymptotically. The

proposed estimators are further illustrated by simulation studies and a real data exam-

ple involving estimation of the homeless population.
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1 Introduction

Semi-supervised learning arises naturally in statistics and machine learning when the labels

are more difficult or more expensive to acquire than the unlabeled data. While numer-

ous algorithms have been proposed for semi-supervised learning, they are mostly focused

on classification, where the labels are discrete values representing the classes to which the

samples belong (see, e.g., Zhu (2008); Ando and Zhang (2007); Zhu and Goldberg (2009);

Wang et al. (2009)). The analyses typically rely on two types of assumptions, distribution-

based and margin-based. The margin-based analysis (see Vapnik (2013); Wang and Shen

(2007); Wang et al. (2008, 2009)) generally assumes that the samples with different labels

have some separation, and the additional unlabeled samples can help enhance the sepa-

ration and achieve a better classification result. The distributional approach (see Blum

and Mitchell (1998); Ando and Zhang (2005, 2007)) usually relies on some assumptions

of a particular type of relation between labels and samples. These assumptions can be

difficult to verify in practice. The setting with continuous valued y has also been discussed

in the literature, see, e.g., Johnson and Zhang (2008), Lafferty and Wasserman (2008)

and Chakrabortty and Cai (2016). For a survey of recent development in semi-supervised

learning, readers are referred to Zhu and Goldberg (2009) and the references therein.

The general semi-supervised model can be formulated as follows. Let (Y,X1, X2, · · · , Xp)

be a (p + 1)-dimensional random vector following an unknown joint distribution P =

P (dy, dx1, . . . , dxp). Denote by PX the marginal distribution of X = (X1, X2, · · · , Xp).

Suppose one observes n “labeled” samples from P ,

[Y,X] = {Yk, Xk1, Xk2, · · · , Xkp}nk=1 , (1)

and, in addition, m “unlabeled” samples from the marginal distribution PX

Xadd = {Xk1, Xk2, · · · , Xkp}n+m
k=n+1 . (2)

In this paper, we focus on estimation and statistical inference for one of the simplest

features, namely the population mean θ = EY . No specific distributional or marginal

assumptions relating X and Y are made.

This inference of population mean under general semi-supervised learning framework

has a variety of applications. We discuss the estimation of treatment effect (ATE) in Section

5.1 and a prototypical example involving survey data in Section 5.2. It is noteworthy that

for some other problems that do not at first look like mean estimation, one can recast

them as mean estimation, possibly after an appropriate transformation. Examples include

estimation of the variance of Y or covariance between Y and a given Xi. In work that

builds on a portion of the present paper, Azriel et al. (2016) considers construction of

linear predictors in semi-supervised learning settings.
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To estimate θ = EY , the most straight-forward estimator is the sample average Ȳ.

Surprisingly, as we show later, a simple least-squares-based estimator, which exploits the

unknown association of Y and X, outperforms Ȳ. We first consider an ideal setting where

there are infinitely many unlabeled samples, i.e., m = ∞. This is equivalent to the case

of known marginal distribution PX . We refer to this case as ideal semi-supervised

inference. In this case, our proposed estimator is

θ̂ = Ȳ − β̂>(2)(X̄− µ), (3)

where β̂(2) is the p-dimensional least squares estimator for the regression slopes and µ = EX
is the population mean of X. This estimator is analyzed in detail in Section 2.2. We then

consider the more realistic setting where there are a finite number of unlabeled samples,

i.e., m <∞. Here one has only partial information about PX . We call this case ordinary

semi-supervised inference. In this setting, we propose to estimate θ by

θ̂ = Ȳ − β̂>(2)(X̄− µ̂), (4)

where µ̂ denotes the sample average of both the labeled and unlabeled X’s. The detailed

analysis of this estimator is given in Section 2.3.

We will investigate the properties of these estimators and in particular establish their

asymptotic distributions and the `2 risk bounds. Both the case of a fixed number of covari-

ates and the case of a growing number of covariates are considered. The basic asymptotic

theory in Section 2 begins with a setting in which the dimension, p, of X, is fixed and

n → ∞ (see Theorem 2.1). For ordinary semi-supervised learning, the asymptotic results

are of non-trivial interest whenever lim infn→∞(mn/n) > 0 (see Theorem 2.3(i)). We then

formulate and prove asymptotic results in the setting where p also grows with n. In general,

these results require the assumption that p = o(
√
n) (see Theorems 2.2 and 2.3(ii)). The

limiting distribution results allow us to construct an asymptotically valid confidence interval

based on the proposed estimators that is shorter than the traditional sample-mean-based

confidence interval.

In Section 3 we propose a methodology for improving the results of Section 2 by intro-

ducing additional covariates as functions of those given in the original problem. We show

the proposed estimator achieves an oracle rate asymptotically. This can be viewed as a

nonparametric regression estimation procedure.

There are results in the sample-survey literature that are qualitatively related to what

we propose. The earliest citation we are aware of is Cochran (1953, Chapter 7). See also

Deng and Wu (1987) and more recently Lohr (2009, Chapter 3.2). In these references

one collects a finite sample, without replacement, from a (large) finite population. There

is a response Y and a single, real covariate, X. The distribution of X within the finite
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population is known. The sample-survey target of estimation is the mean of Y within

the full population. In the case in which the size of this population is infinitely large,

sampling without replacement and sampling with replacement are indistinguishable. In

that case the results from this sampling theory literature coincide with out results for the

ideal semi-supervised scenario with p = 1, both in terms of the proposed estimator and its

asymptotic variance. Otherwise the sample-survey theory results differ from those within

our formulation, although there is a conceptual relationship. In particular the theoretical

population mean that is our target is different from the finite population mean that is the

target of the sample-survey methods. In addition we allow p > 1 and as noted above, we also

have asymptotic results for p growing with n. Most notably, our formulation includes the

possibility of semi-supervised learning. We believe it should be possible, and sometimes of

practical interest, to include semi-supervised sampling within a sampling survey framework,

but we do not do so in the present treatment.

The rest of the paper is organized as follows. We introduce the fixed covariate proce-

dures in Section 2. Specifically, ideal semi-supervised learning and ordinary semi-supervised

learning are considered respectively in Sections 2.2 and 2.3, where we analyze the asymp-

totic properties for both estimators. We further give the `2-risk upper bounds for the two

proposed estimators in Section 2.4. We extend the analysis in Section 3 to nonparametric

regression model, where we show the proposed procedure achieves an oracle rate asymp-

totically. Simulation results are reported in Section 4. Applications to the estimation of

Average Treatment Effect is discussed in Section 5.1, and Section 5.2 describes a real data

illustration involving estimation of the homeless population in a geographical region. The

proofs of the main theorems are given in Section 6 and additional technical results are

proved in the Appendix.

2 Procedures

We propose in this section a least squares estimator for the population mean in the semi-

supervised inference framework. To better characterize the problem, we begin with a brief

introduction of the random design regression model. More details of the model can be

found in, e.g., Buja et al. (2014).

2.1 A Random Design Regression Model

Let (Y,X) ∼ P represent the population response and predictors. Assume all second

moments are finite. Denote ~X = (1, X>)> ∈ Rp+1 as the predictor with intercept. The

following is a linear analysis, even though no corresponding linearity assumption is made
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about the true distribution P of (X, Y). Some notation and definitions are needed. Let

β = arg min
γ∈Rp+1

E
(
Y − ~X>γ

)2
. (5)

Here β ∈ Rp+1 are referred to as the population slopes, and δ = Y −β> ~X is called the total

deviation. We also denote

τ2 := Eδ2, µ := EX ∈ Rp, ~µ := E ~X = (1, µ>)>, ~Ξ = E ~X ~X>. (6)

Some basic facts about the regression slope and total deviation are summarized in the

following lemma.

Lemma 2.1 Let (Y,X) ∼ P have finite second moment, and let the matrix ~Ξ be non-

singular. Then

β = ~Ξ−1
(
E ~XY

)
, Eδ = 0, EδX = 0, θ = ~µ>β.

It should be noted that under our general model, there is no independence assumption

between X and δ.

For sample of observations (Yk, Xk1, Xk2, · · · , Xkp)
iid∼ P , k = 1, · · · , n, let ~Xi =

(1, ~X>i )> and denote the design matrix ~X ∈ Rn×(p+1) as follows

~X :=


~X>1
· · ·
· · ·
~X>n

 :=


1 X11 X12 · · · X1p

...
...

...
...

1 Xn1 Xn2 · · · Xnp

 .
In our notation, ~· means that the vector/matrix contains the intercept term; boldface

indicates that the symbol is related to a multiple sample if observations. Meanwhile, denote

the sample response and deviation as Y = (Y1, · · · , Yn)> and δ = (δ1, · · · , δn)>. Now Y

and X are connected by a regression model:

Y = ~Xβ + δ, and Yk = ~X>k β + δk, k = 1, · · · , n. (7)

Let β̂ = (β̂1, · · · , β̂p+1)> be the usual least squares estimator, i.e.

β̂ = (~X> ~X)−1 ~X>Y. (8)

Then β̂ provides a straightforward estimator for β. β and β̂ can be further split into two

parts,

β =

[ ]
β1

β(2)
, β̂ =

[ ]
β̂1

β̂(2)
, β1, β̂1 ∈ R, β(2), β̂(2) ∈ Rp. (9)
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β1, β̂1 and β(2), β̂(2) play different roles in the analysis as we will see later. The `2 risk of

the sample average Ȳ about the population mean θ = EY has the following decomposition.

Proposition 2.1 Ȳ is an unbiased estimator of θ and

nE(Ȳ − θ)2 = nVar(Ȳ) = τ2 + β>(2)E
(

(X − µ)(X − µ)>
)
β(2). (10)

From (10), we can see that as long as β(2) 6= 0, i.e., there is a significant linear relationship

between Y and X, then the risk of Ȳ will be significantly greater than τ2.

In the next two subsections, we discuss separately under the ideal semi-supervised set-

ting and the ordinary semi-supervised setting.

2.2 Improved Estimator under the Ideal Semi-supervised Setting

We first consider the ideal setting where there are infinitely many unlabeled samples, or

equivalently PX is known. To improve Ȳ, we propose the least squares estimator,

θ̂LS := ~µ>β̂ = β̂1 + µ>β̂(2) = Ȳ − β̂>(2)(X̄− µ), (11)

where β̂ = (β̂1, β̂
>
(2))
> is defined in (8).

The following theorem provides the asymptotic distribution of the least squares estima-

tor under the minimal conditions that [Y,X] have finite second moments, ~Ξ = E ~X ~X> be

non-singular and τ2 = Eδ2 > 0.

Theorem 2.1 (Asymptotic Distribution, fixed p) Let (Y1, X1), · · · , (Yn, Xn) be i.i.d.

copies from P , and assume that [Y,X] has finite second moments, ~Ξ is non-singular and

τ2 > 0. Then, under the setting that P is fixed and n grows to infinity,

θ̂LS − θ
τ/
√
n

d→ N(0, 1), (12)

and

MSE/τ2 d→ 1, where MSE :=

∑n
i=1(Yi − ~X>i β̂)2

n− p− 1
. (13)

In the more general setting where P = Pn,p varies and p = pn grows, we need stronger

conditions to analyze the asymptotic behavior of θ̂LS. Suppose E(X −µ)(X −µ)> = Σ, we

consider the standardization of X as

Z ∈ Rp, Z = Σ−1/2(X − µ). (14)

Clearly, EZ = 0,EZZ> = Ip. For this setting we assume that Z, δ satisfy the following

moment conditions:

for some κ > 0,
Eδ2+2κ

(Eδ2)1+κ
≤M1; (15)
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∀v ∈ Rp, E|〈v, Z〉|2+κ ≤M2; (16)

E
(
‖Z‖22δ2

)(
E‖Z‖22

)
· (Eδ2)

≤M3. (17)

Theorem 2.2 (Asymptotic result, growing p) Let (Y1, X1), · · · , (Yn, Xn) be i.i.d. copies

from P = Pn,p, p = pn = o(
√
n). Assume that the matrix of the second moments of X

exists and is non-singular and the standardized random variable Z given in (14) satisfies

(15), (16) and (17), then the asymptotic behavior results (12) and (13) still hold.

Based on Theorems 2.1 and 2.2, we can construct the asymptotic (1−α)-level confidence

interval for θ as [
θ̂LS − z1−α/2

√
MSE

n
, θ̂LS + z1−α/2

√
MSE

n

]
. (18)

Remark 2.1 It is not difficult to see that, under the setting in Theorem 2.2,

MSE
d→ τ2, σ̂2

Y
d→ Var(Y ) = τ2 + β>(2)E((X − µ)(X − µ)>)β(2).

Then the traditional z-interval for the mean of Y ,[
Ȳ − z1−α/2

√
σ̂2
Y

n
, Ȳ + z1−α/2

√
σ̂2
Y

n

]
, (19)

is asymptotically more accurate than (18), which implies that the proposed least squares

estimator is asymptotically more accurate than the sample mean.

2.3 Improved Estimator under the Ordinary Semi-supervised Inference

Setting

In the last section, we discussed the estimation of θ based on n full observations Yk, Xk, k =

1, · · · , n with infinitely many unlabeled samples {Xk, k = n+ 1, · · · } (or equivalently with

known marginal distribution PX). However, having PX known is rare in practice. A

more realistic practical setting would assume that distribution PX is unknown and we only

have finitely many i.i.d. samples (Xi+1, Xi+2, · · · , Xi+m) without corresponding Y . This

problem relates to the one in previous section since we are able to obtain partial information

of PX from the additional unlabeled samples.

When µ or ~µ is unknown, we estimate by

µ̂ =
1

n+m

n+m∑
k=1

Xk, ~̂µ = (1, µ̂>)>. (20)
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Recall that β̂ = (β̂1, β
>
(2))
> is the ordinary least squares estimator. Now, we propose the

semi-supervised least squares estimator θ̂SSLS,

θ̂SSLS = ~̂µ>β̂ = Ȳ − β̂>(2)

(∑n
i=1Xi

n
−
∑n+m

i=1 Xi

n+m

)
. (21)

θ̂SSLS has the following properties:

• when m =∞, ~̂µ = ~µ. Then θ̂SSLS exactly equals θ̂LS in (11);

• when m = 0, θ̂SSLS exactly equals Ȳ. As there are no additional samples of X so that

no extra information for PX is available, it is natural to use Ȳ to estimate θ.

• In the last term of (21), it is important to use
∑n+m
i=1 Xi
n+m rather than

∑m
i=1Xi
m , in spite

of the fact that the latter might seem more natural because it is independent of the

term
∑n
i=1Xi
n that precedes it.

Under the same conditions as Theorems 2.1, 2.2, we can show the following asymptotic

results for θ̂SSLS, which relates to the ordinary semi-supervised setting described in the

introduction. The labeled sample size n → ∞, the unlabeled sample size is m = mn ≥ 0

and the distribution P is fixed (but unknown) which, in particular, implies that p is a fixed

dimension, not dependent on n. Let

ν2 =

√
τ2 +

n

n+m
β>(2)Σβ(2), Σ = E(X − µ)(X − µ)>.

Theorem 2.3 (Asymptotic distribution of θ̂SSLS, fixed p) Let (Y1, X1), · · · , (Yn, Xn)

be i.i.d. labeled samples from P , Xn+1, · · · , Xn+m are m additional unlabeled samples from

PX . Suppose ~Ξ is non-singular and τ2 > 0. If P is fixed and n→∞ then

√
n(θ̂SSLS − θ)

ν

d→ N(0, 1), (22)

and
ν̂2

ν2

d→ 1 (23)

where ν̂2 = m
m+nMSE+ n

m+n σ̂
2
Y with MSE = 1

n−p−1

∑n
k=1(Yi− ~X>k β̂)2 and σ̂2

Y = 1
n−1

∑n
k=1(Yi−

Ȳ)2.

Based on Theorems 2.3 and 2.4, the (1− α)-level asymptotic confidence interval for θ can

be written as [
θ̂SSLS − z1−α/2

ν̂√
n

, θ̂SSLS + z1−α/2
ν̂√
n

]
. (24)
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Since MSE ≤ σ̂2
Y asymptotically (with equality only when β(2) = 0), so that when β(2) 6= 0

the asymptotic CI in (24) is shorter than the traditional sample-mean-based CI (19).

The following statement refers to a setting in which P = Pn and p = pn may depend

on n as n → ∞. Consequently, ~Ξ = ~Ξn, Σ = Σn and Z = Zn (defined at (14)) may also

depend on n.

Theorem 2.4 (Asymptotic distribution of θ̂SSLS, growing p) Let n → ∞, P = Pn,

and p = pn = o(
√
n). Suppose ~Ξn is non-singular, τ2

n > 0 and the standardized random

variable Z satisfies (15), (16) and (17). Then (22) and (23) hold.

2.4 `2 Risk for the Proposed Estimators

In this subsection, we analyze the `2 risk for both θ̂LS and θ̂SSLS. Since the calculation of

the proposed estimators involves the unstable process of inverting the Gram matrix ~X> ~X,

for the merely theoretical purpose of obtaining the `2 risks we again consider the refinement

θ̂1
LS := TrunY(θ̂LS), and θ̂1

SSLS := TrunY(θ̂SSLS), (25)

where

TrunY(x) =


(n+ 1)ymax − nymin, if x > (n+ 1)ymax − nymin,

x, if |x− ymax+ymin
2 | ≤ (n+ 1

2)(ymax − ymin),

(n+ 1)ymin − nymax, if x < (n+ 1)ymin − nymax,

(26)

ymax = max1≤k≤n Yk, ymin = min1≤k≤n Yk. We emphasize that this refinement is mainly for

theoretical reasons and is often not necessary in practice.

The regularization assumptions we need for analyzing the `2 risk are formally stated as

below.

1. (Moment conditions on δ) There exist M1 > 0 such that

Eδ4 = Eδ4
n ≤M4; (27)

2. (sub-Gaussian condition) Suppose Z = Zn is the standardization of X = Xn

Zn ∈ Rp, Zn = Σ−1/2
n (Xn − µn), Σn = E(Xn − µn)(Xn − µn)>,

which satisfies

∀u ∈ {u ∈ Rp+1 : ‖u‖2 = 1},
∥∥∥u>Zn∥∥∥

ψ2

≤M5. (28)

Here ‖ · ‖ψ2 is defined as ‖x‖ψ2 = supq≥1 q
−1/2(E|x|q)1/q for any random variable x.
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2’ (Bounded condition) The standardization Zn satisfies

‖Zn‖∞ ≤M5, almost surely. (29)

We also note Σ = E(X−µ)(X−µ)>, Σδ1 = E(X−µ)δ(X−µ)>, Σδ2 = E(X−µ)δ2(X−µ)>.

Under the regularization assumptions above, we provide the `2 risks for θ̂1
LS and θ̂1

SSLS

respectively in the next two theorems.

Theorem 2.5 (`2 Risk of θ̂1
LS) Let (Y1, X1), · · · , (Yn, Xn) be i.i.d. copies from Pn. As-

sume that Assumptions 1+2 (27)(28) or 1+2’ (27)(29) hold, p = pn = o(
√
n). Recall

τ2 = τ2
n = E(Y − ~Xβ)2 depends on n. Then we have the following estimate for the risk of

θ̂1
LS,

nE
(
θ̂1

LS − θ
)2

= τ2
n + sn, (30)

where

sn =
p2

n
An,p +

p2

n5/4
Bn,p, max(|An,p|, |Bn,p|) ≤ C (31)

for a constant C that depends on M0,M1 and M2. The formula for An,p is

An,p =
1

p2

(
[tr(Σ−1Σδ1)]2 + 3‖Σ−1Σδ1‖2F − tr(Σ−1Σδ2)

+ 2E
(
δ2(X − µ)>

)
· E
(

Σ−1(X − µ)(X − µ)>Σ−1(X − µ)
)

+ 2pτ2

)
.

(32)

Theorem 2.6 (`2 risk of θ̂1
SSLS) Let (Y1, X1), · · · , (Yn, Xn) be i.i.d. labeled samples from

P , Xn+1, · · · , Xn+m are additional m unlabeled samples from PX . If Assumptions 1+2 or

1+2’ in (27)-(29) hold, p = o(
√
n), we have the following estimate of the risk for θ̂1

SSLS,

nE
(
θ̂1

SSLS − θ
)2

= τ2
n +

n

n+m
β>(2),nΣnβ(2),n + sn,m (33)

where

|sn,m| ≤
Cp2

n
. (34)

for constant C only depends on M0,M1 and M2 in Assumptions (27)-(29).

Comparing Proposition 2.1 and Theorems 2.5 and Theorem 2.6, we can see as long as

β>(2),nΣnβ(2),n > 0,

i.e., E(Y |X) has non-zero correlation with X, θ̂1
LS and θ̂1

SSLS outperform Ȳ asymptotically

in `2-risk.
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Remark 2.2 Comparing Theorems 2.5, 2.6 and Proposition 2.1, we can see the risk of

θ̂SSLS is approximately a linear combination of Ȳ and θ̂LS with weight based on m and n,

E
(
θ̂1

SSLS − θ
)2
≈ n

n+m
E
(
Ȳ − θ

)2
+

m

m+ n
E
(
θ̂1

LS − θ
)2

Remark 2.3 (Gaussian Design) Theorems 2.5 and 2.6 only provides upper bound of

the `2 risks since because only moment conditions on the distribution of Y,X are assumed.

In fact, under Gaussian design of Y,X, we can obtain an exact expression for the `2-risk

of both θ̂LS and θ̂SSLS. It is noteworthy that the truncation refinement is not necessary for

both estimators under Gaussian design. All results are non-asymptotic.

Proposition 2.2 Assume X ∼ Np(µ,Σ) and Y |X ∼ Np(Xβ, τ
2I), where Σ is non-

singular. If {Yk, Xk}nk=1 are n i.i.d. copies, then

nE
(
θ̂LS − θ

)2
= τ2 +

pτ2

(n− p− 2)
. (35)

If we further have m additional unlabeled samples {Xk}n+m
k=n+1, then we also have

nE
(
θ̂SSLS − θ

)2
=τ2 +

m

n+m

pτ2

n− p− 2
+

n

n+m
β>(2)E

(
(X − µ)(X − µ)>

)
β(2). (36)

The result in Proposition 2.2 matches with the general expression of (30) and (32) as
pτ2

(n−p−2) = pτ2

n +O
(
p2

n2

)
if p = o(

√
n). By comparing (35), (36), we can also see

nE
(
θ̂SSLS − θ

)2
=

n

n+m
nE(Ȳ − θ)2 +

m

n+m
nE(θ̂LS − θ)2.

3 Further Improvements – Oracle Optimality

In the previous sections, we proposed and analyzed θ̂LS and θ̂SSLS under the semi-supervised

learning settings. These estimators are based on linear regression and best linear approxi-

mation of Y by X. We consider further improvement in this section. Before we illustrate

how the improved estimator works, it is helpful to take a look at the oracle risk for estimat-

ing the mean θ = EY , which can serve as a benchmark for the performance of the improved

estimator.

3.1 Oracle Estimator and Risk

Define ξ(X) = EP (Y |X) as the response surface and suppose

ξ(x) = ξ0(x) + c

11



for some unknown constant c. Given samples {(Yk, Xk)}nk=1, our goal is to estimate EY = θ.

Now assume an oracle has knowledge of ξ0(x), but not of θ = E(Y ), c, nor the distribution

of Y − ξ0(X). In this case, the model can be written as

Yk − ξ0(Xk) =c+ εk, k = 1, · · · , n, where Eεk = 0;

θ =Eξ0(X) + c.
(37)

Under the ideal semi-supervised setting, PX , ξ0 and Eξ0(X) are known. To estimate θ, the

natural idea is to by the following estimator

θ̂∗ = Ȳ − ξ̄0 + Eξ0(X) =
1

n

n∑
k=1

(Yk − ξ0(Xk)) + Eξ0(X). (38)

Clearly θ̂∗ is an unbiased estimator of θ, while

nE
(
θ̂∗ − θ

)2
= nVar

(
1

n

n∑
i=1

(Yi − ξ0(Xi))

)
= Var (Yi − ξ(Xi))

= EX
(
EY (Y − ξ(X)|X)2

)
:= σ2.

(39)

This defines the oracle risk for population mean estimation under the ideal semi-supervised

setting as σ2 = EX
(
EY (Y − E(Y |X))2

)
.

For the ordinary semi-supervised setting, where PX is unknown but m additional un-

labeled samples {Xk}n+m
k=n+1 are available, we propose the semi-supervised oracle estimator

as

θ̂∗ss = Ȳ − 1

n

n∑
k=1

ξ0(Xk) +
1

n+m

n+m∑
k=1

ξ0(Xk).

Then one can calculate that

nE
(
θ̂∗ss − θ

)2
= σ2 +

n

n+m
VarPX (ξ(X)). (40)

The detailed calculation of (40) is provided in the Appendix.

The preceding motivation for σ2 and σ2+ n
n+mVarPX (ξ(X)) as the oracle risks are partly

heuristic, based on the arguments in (38) and (39). But it corresponds to a formal minimax

statement, as follows.

Proposition 3.1 (Oracle Lower Bound) Let σ2 > 0,

Pξ0(·),σ2 =
{
P : ξ0(x) = E(Y |X = x)− c, σ2 = EX

(
EY (Y − E(Y |X))2

)}
.

Then based on observations {Yi, Xi}ni=1 and known marginal distribution PX ,

inf
θ̃

sup
P∈Pξ0,σ2

[
EP
(
n
(
θ̃ − θ

)2
)]

= σ2. (41)

12



Let σ2, σ2
ξ > 0, ξ0(X) be a linear function of X,

Pss
ξ0,σ2

ξ ,σ
2 =

{
P : ξ0(x) = E(Y |X = x)− c, σ2

ξ = Var(ξ(X)), σ2 = EX
(
EY (Y − E(Y |X))2

)}
,

based on observations {Yi, Xi}ni=1 and {Xi}n+m
i=n+1,

inf
θ̃

sup
P∈Pss

ξ0,σ
2
ξ
,σ2

[
EP
(
n
(
θ̃ − θ

)2
)]

= σ2 +
n

n+m
σ2
ξ . (42)

3.2 Improved Procedure

In order to approach oracle optimality we propose to augment the set of covariatesX1, . . . , Xp

with additional covariates g1(X), . . . , gq(X). (Of course these additional covariates need to

be chosen without knowledge of ξ0. We will discuss their choice later in this section.) In

all there are now p• = p+ q covariates, say

X• = (X•1 , . . . , X
•
p , X

•
p+1, . . . , X

•
p+q) = (X1, . . . , Xp, g1(X), . . . , gq(X)).

For both ideal and ordinary semi-supervision we propose to let q = qn as n → ∞, and to

use the estimator θ̂•LS and θ̂•SSLS. For merely theoretical purpose of `2 risks we consider the

refinement again

θ̂•1LS = TrunY(θ̂•LS) and θ̂•1SSLS = TrunY(θ̂•SSLS),

where TrunY(·) is defined as (26). Apply previous theorems for asymptotic distributions

and moments. For convenience of statement and proof we assume that the support of

X is compact, ξ(X) is bounded and Y is sub-Gaussian. These assumptions can each be

somewhat relaxed at the cost of additional technical assumptions and complications. Here

is a formal statement of the result.

Theorem 3.1 Assume the support of X is compact, ξ(X) = E(Y |X) is bounded, and Y is

sub-Gaussian. Consider asymptotics as n→∞ for the case of both ideal and ordinary semi-

supervision. Assume also that either (i) ξ(X) is continuous or (ii) that PX is absolutely

continuous with respect to Lebesgue measure on {X}. Let {gk(x) : k = 1, . . .} be a bounded

basis for the continuous functions on {X} in case (i) and be a bounded basis for the ordinary

`2 Hilbert space on {X} in case (ii). There exists a sequence of qn such that limn→∞ qn →
∞, and

• the estimator θ̂•1LS for the problem with observations {Yi, X•p+qn : i = 1, . . . , n} asymp-

totically achieves the ideal oracle risk, i.e.

lim
n→∞

nE
(
θ̂•1LS − θ

)2
= σ2. (43)
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• Now we suppose limn→∞
n

n+mn
= ρ for some fixed value 0 ≤ ρ ≤ 1. Applying the

estimator θ̂•SSLS for the problem with observations {Yi, X•p+qn : i = 1, . . . , n} and

{X•i }
n+mn
i=n+1. Then

lim
n→∞

nE
(
θ̂•1SSLS − θ

)2
= σ2 + ρVarPX (ξ(X)). (44)

Finally, θ̂•LS and θ̂•SSLS are asymptotically unbiased and normal with the corresponding vari-

ances.

(38) and (44) show that the proposed estimators asymptotically achieve the oracle values

in (41) and (42).

4 Simulation Results

In this section, we investigate the numerical performance of the proposed estimators in

various settings in terms of estimation errors and coverage probability as well as length of

confidence intervals. All the simulations are repeated for 1000 times.

We analyze the linear least squares estimators θ̂LS and θ̂SSLS proposed in Section 2 in

the following three settings.

1. (Gaussian X and quadratic ξ) We generate the design and parameters as follows,

µ ∼ N(0, Ip), Σ ∈ Rp×p, Σij = I{i = j}+ 1
2pI{i 6= j}, β ∼ N(0, Ip+1). Then we draw

i.i.d. samples Y,X as

Xk ∼ N(µ,Σ), Yk = ξ(Xk) + εk,

where

ξ(Xk) = (‖Xk‖22 − p) + ~X>β, εk ∼ N
(
0, 2‖Xk‖22/p

)
.

It is easy to calculate that θ = EY = β1 in this setting.

2. (Heavy tailed X and Y ) We randomly generate

{Xki}1≤k≤n,1≤i≤p
iid∼ P3, Yk =

p∑
i=1

(sin(Xki) +Xki) + .5 · εk, εk
iid∼ P3.

where P3 has density fP3(x) = 1
1+|x|3 , −∞ < x < ∞. Here, the distribution P3 has

no third or higher moments. In this case, µ = EX = 0, θ = EY = 0.

3. (Poisson X and Y ) Then we also consider a setting where

{Xki}1≤k≤n,1≤i≤p
iid∼ Poisson(10), Yk|Xk

iid∼ Poisson(10Xk1).

In this case, µ = EX = (10, . . . , 10)> ∈ Rp, θ = EY = 100.
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We compare the average `2-loss of Ȳ, θ̂LS and θ̂SSLS for various choices of n, p and

m. The results are summarized in Table 1. An interesting aspect is even when p grows

faster than n1/2, θ̂LS and θ̂SSLS are still preferable estimators to Ȳ. It is also noteworthy

that although our theoretical analysis for the `2-risk focused on the refined estimators θ̂1
LS

and θ̂1
SSLS with bounded or sub-Gaussian designs, the refinement and assumptions are for

technical needs, which might not be necessary in practice as we can see from this example.

We also compute the 95%-confidence interval for each setting above and list the average

length and coverage probability in Table 2. It can be seen that under the condition p =

o(n1/2), the proposed confidence intervals based on θ̂LS and θ̂SSLS are valid and shorter on

average than the traditional z-confidence interval centered at Ȳ.

5 Applications

In this section, we apply the proposed procedures to the average treatment effect estimation

and a real data example on homeless population.

5.1 Application to Average Treatment Effect Estimation

We first discuss an application of the proposed least squares estimator to Average Treatment

Effect (ATE) estimation. Suppose YT and YC are the responses for the treatment population

and control population respectively, then ATE is then defined as

d = EYT − EYC . (45)

Under Neyman’s paradigm (Splawa-Neyman et al., 1990; Rubin, 1990), a total number of

(nt+nc) subjects are randomly assigned to the treatment group and control group. Suppose

Yt,1, · · · , Yt,nt are the responses under treatment, while Yt,1, · · · , Yt,nc are the responses of

the control group. The straight forward idea for estimating ATE is the sample average

treatment effect (SATE), which simply takes the difference of average effects between the

two groups. In addition, the covariates associated with the responses are often available

and helpful to improve the estimation of ATE.

In the estimation of ATE, we follow the model setting of Pitkin et al. (2013). Suppose

nt, nc people are from treatment group and control group respectively, where their response

and predictor satisfies

(Yt, Xt)
iid∼ P t, (Yc, Xc)

iid∼ P c.

Here due to the randomization setting, it is reasonable to assume P t and P c share the same

marginal distribution of X: P tX = P cX = PX . There are also m additional samples possibly

coming from drop-outs or any other subjects that also represent the population PX . In
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(p, n) (Ȳ − θ)2 (θ̂SSLS − θ)2 (θ̂LS − θ)2

m = 100 m = 1000 m = 10000

Setting 1: Gaussian X and Quadratic ξ

(1, 100) 0.304 0.184 0.075 0.063 0.056

(10, 100) 2.73 1.529 0.518 0.313 0.296

(50, 100) 13.397 7.961 3.967 2.988 2.868

(10, 500) 0.526 0.464 0.211 0.067 0.045

(50, 500) 2.668 2.278 1.089 0.373 0.273

(200, 500) 10.743 9.135 4.615 2.345 1.949

Setting 2: Heavy tailed X and Y

(1, 100) 0.732 0.410 0.244 0.196 0.188

(10, 100) 7.791 5.428 2.505 1.959 1.831

(50, 100) 107.363 47.036 17.754 14.201 13.435

(10, 500) 2.575 2.097 0.988 0.354 0.261

(50, 500) 12.569 10.481 5.619 2.342 1.780

(200, 500) 43.997 36.123 30.856 13.175 9.642

Setting 3: Poisson X and Y

(1, 100) 97.912 50.510 10.168 2.036 1.015

(10, 100) 98.337 50.772 10.535 2.085 1.061

(50, 100) 94.475 52.166 10.951 3.146 2.100

(10, 500) 20.062 16.765 6.890 1.104 0.186

(50, 500) 19.915 15.793 6.541 1.165 0.225

(200, 500) 20.933 17.639 7.159 1.300 0.333

Table 1: Average squared loss of sample mean estimator Ȳ, the least squares estimator θ̂LS

and the semi-supervised least squares estimators θ̂SSLS under different values of (p, n) and

various settings.
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(p, n) via Ȳ via θ̂SSLS via θ̂LS

m = 100 m = 1000 m = 10000

Setting 1: Gaussian X and Quadratic ξ

(1, 100) 1.902(0.055) 1.521(0.046) 1.074(0.049) 0.940(0.061) 0.921(0.064)

(5, 100) 4.430(0.058) 3.301(0.070) 1.911(0.055) 1.467(0.059) 1.400(0.069)

(10, 100) 6.318(0.048) 4.678(0.058) 2.655 (0.063) 2.010(0.076) 1.913(0.084)

(1, 500) 0.845(0.041) 0.793(0.042) 0.608(0.041) 0.451(0.042) 0.413(0.046)

(10, 500) 2.818(0.045) 2.596(0.041) 1.768(0.048) 1.023(0.051) 0.832(0.064)

(25, 500) 4.558(0.051) 4.194(0.039) 2.837(0.054) 1.606(0.058) 1.288(0.078)

Setting 2: Heavy tailed X and Y

(1, 100) 3.349(0.039) 2.069(0.059) 1.596(0.061) 1.446(0.044) 1.420(0.038)

(5, 100) 7.332(0.050) 4.885(0.082) 3.384(0.067) 2.920(0.063) 2.847(0.048)

(10, 100) 11.292(0.044) 7.436(0.079) 5.073(0.078) 4.343(0.057) 4.225(0.044)

(1, 500) 1.573(0.046) 1.205(0.055) 0.970(0.077) 0.773(0.066) 0.723(0.058)

(10, 500) 5.947(0.043) 4.427(0.061) 3.217(0.084) 2.180(0.069) 1.904(0.047)

(25, 500) 8.582(0.040) 7.079(0.055) 5.197(0.072) 3.617(0.069) 3.229(0.047)

Setting 3: Poisson X and Y

(1, 100) 39.164(0.063) 27.831(0.061) 12.386(0.056) 5.506(0.047) 3.895(0.075)

(5, 100) 39.396(0.053) 28.003(0.043) 12.485(0.067) 5.600(0.062) 4.004(0.070)

(10, 100) 39.143(0.065) 27.832(0.054) 12.443(0.064) 5.655(0.058) 4.105(0.063)

(1, 500) 17.548(0.054) 16.035(0.054) 10.232(0.050) 4.195(0.043) 1.753(0.054)

(10, 500) 17.621(0.053) 16.102(0.062) 10.276(0.048) 4.216(0.050) 1.768(0.043)

(25, 500) 17.632(0.053) 16.113(0.052) 10.285(0.051) 4.229(0.045) 1.795(0.061)

Table 2: Average length and coverage probability (in the parenthesis) 95%-CI based on Ȳ,

θ̂LS and θ̂SSLS under different values of (p, n) and various settings.
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summary, the available samples include

{(Yt,k, Xt,k)}ntk=1, {(Yc,k, Xc,k)}nck=1, {(Xa,k)}mk=1. (46)

We again introduce the population slope for both treatment and control group to measure

the relationship between Yt, Xt and Yc, Xc respectively

βt = arg min
γ∈Rp+1

E
(
Yt − ~X>t γ

)2
, βc = arg min

γ∈Rp+1

E
(
Yc − ~X>c γ

)2
. (47)

Based on Lemma 2.1, βt, βc has the following close form when Pt, Pc have non-degenerate

second moment:

βt =
(
E ~Xt

~X>t

)−1 (
E ~XtYt

)
, βc =

(
E ~Xc

~X>c

)−1 (
E ~XcYc

)
. (48)

Our target, the population ATE, is defined as d = EYc−EYt. We propose the corresponding

semi-supervised least squares estimator

d̂SSLS = µ̂>
(
β̂t − β̂c

)
. (49)

Here β̂t, β̂c ∈ Rp+1 are the least squares estimators for treatment and control group respec-

tively; ~̂µ is the mean of all available predictors,

β̂t =
(
~X>t

~Xt

)−1
~X>t Yt, β̂c =

(
~X>c

~Xc

)−1
~X>c Yc, (50)

where ~̂µ =

(
1

µ̂

)
, µ̂ =

1

nt + nc +m

(
nt∑
k=1

Xt,k +

nc∑
k=1

Xc,k +

m∑
k=1

Xa,k

)
. (51)

Based on the analysis we have in the previous section, the proposed d̂SSLS has the

following asymptotic distribution with a fixed p, P t and P c.

Theorem 5.1 (Asymptotic behavior of d̂SSLS) Suppose P t, P c are fixed distribution with

finite and non-degenerate second moments, then we have the following asymptotic distribu-

tion if the sample size nt, tc grow to infinity:

d̂SSLS − d
V

d→ N(0, 1),
V̂ 2

V 2

d→ 1. (52)

Here

V 2 =
τ2
t

nt
+
τ2
c

nc
+

1

nt + nc +m
(βt,(2) − βc,(2))

>E(X − µ)(X − µ)>(βt,(2) − βc,(2)), (53)

V̂ 2 =
MSEt
nt

+
MSEc
nc

+
1

nt + nc +m
(β̂t − β̂c)>Σ̂X(β̂t − β̂c), (54)
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MSEt =
1

nt − p− 1

nt∑
k=1

(Yt,k − ~X>t,kβ̂t)
2, MSEc =

1

nc − p− 1

nc∑
k=1

(Yc,k − ~X>c,kβ̂c)
2,

Σ̂X =
1

nt + nc +m

( nt∑
k=1

(Xt,k − µ̂)(Xt,k − µ̂)> +

nc∑
k=1

(Xk − µ̂)(Xk − µ̂)>

+

m∑
k=1

(Xk − µ̂)(Xk − µ̂)>
)
.

Remark 5.1 Similarly to the procedure in Proposition 2.1, we can calculate that for the

sample average treatment effect, i.e.,

d̂ =

nt∑
k=1

Yt,k
nt
−

nc∑
k=1

Yt,c
nc

,

Var(d̂) =
τ2
t + β>t,(2)E(X − µ)(X − µ)>βt,(2)

nt
+
τ2
c + β>c,(2)E(X − µ)(X − µ)>βt,(2)

nc
.

We can check that asymptotically V 2 ≤ Var(d̂), which also shows the merit of the proposed

semi-supervised least squares estimator.

Remark 5.2 The asymptotic behavior of d̂SSLS and the `2 risk for a refined d̂SSLS for

growing p can be elaborated similarly to the previous sections.

5.2 Real Data Example: Estimating Homeless in Los Angeles County

We now consider an application to estimate the number of homeless people in Los Angeles

County. Homelessness has been a significant public issue for the United States since nearly

a century ago (Rossi, 1991). A natural question for the demographers is to estimate the

number of homeless in a certain region. Estimating the number of homeless in metropolitan

area is an important but difficult task due to the following reasons. In a typical design of

U.S. Census, demographers visit people through their place of residence. In this case, most

of the homeless will not be contacted (Rossi, 1991) through this process. Visiting homeless

shelter or homeless service center may collect some information of the homeless, but a large

number of homeless still cannot be found since they may use the service anonymously or

simply not use the service.

The Los Angeles County includes land of 2000 square miles, total population of 10

million and 2,054 census tracts. In 2004-2005, the Los Angeles Homeless Services Authority

(LAHSA) conducted the study for the homeless population. Due to the huge cost to perform

street visit for all census tracts, the demographers perform a stratified sampling on part

of them. First, 244 tracts that are believed to have large amount of homeless are pre-

selected and visited. Next for the rest of the tracts, 265 of them are randomly selected
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via θ̂SSLS 95%-CI via Ȳ 95%-CI

53824 [47120, 60529] 52527 [45485, 59570]

Table 3: Estimated total number of homeless in Los Angeles County

and visited. This design leaves 1,545 tracts unvisited. Besides the number of homeless,

some predictors are available for all 2,054 tracts. In our analysis, 7 of them are included,

Perc.Industrial, Perc.Residential, Perc.Vacant, Perc.Commercial, Perc.OwnerOcc,

Perc.Minority, MedianHouseholdIncome. These predictors have been used and are known

to have high correlation with the response Kriegler and Berk (2010).

Suppose Ttotal is the total number of homeless in Los Angeles, Tpre is the number of

homeless in 244 pre-selected tracts, θran is average number of homeless per tract in all 1,810

non-pre-selected tracts. Clearly,

Ttotal = Tpre + 1810 · θran. (55)

The proposed semi-supervised inference framework fit into the 1,810 samples with 265

labeled and 1,545 unlabeled samples. We can apply the proposed semi-supervised least

squares estimator θ̂1
SSLS to estimate θran and use (55) to calculate the estimate and 95%

confidence interval for Ttotal. In contrast, the estimate via sample-mean estimator was also

calculated. The results are shown in Table 3. It is easy to see that the estimate via θ̂1
SSLS

is slightly larger than the one via Ȳ.

To further investigate and diagnose, we calculated the least squares estimator β̂, the

average predictor values across all 1,810 non-pre-selected tracts X̄full and the average pre-

dictor values across 265 randomly selected tracts X̄. These values are listed in Table 5.2.

We can see from Table 5.2 that due to insufficiency of sampling, there is difference

between X̄ and X̄full, especially for the predictor Perc.OwnerOcc. When there is association

between these prectors and reponse, it is more reasonable to adjust for this discrepancy

from taking the mean. Recall the proposed estimator

θ̂SSLS = Ȳ + β̂>(2)

(
X̄full − X̄

)
, where X̄full =

1

n+m

n+m∑
k=1

Xk, X̄ =
1

n

n∑
k=1

Xk.

The difference between two estimates exactly originated from the adjustment term β̂>(2)(X̄full−
X̄), which has been justified in both theoretical analysis and simulation studies in the pre-

vious sections.
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β̂ X̄full − X̄ X̄ X̄full

Intercept 21.963

Perc.Industrial 0.027 0.143 61.293 61.149

Perc.Residential -0.087 -0.075 4.066 4.141

Perc.Vacant 1.404 -0.075 4.066 4.141

Perc.Commercial 0.338 -0.542 15.130 15.672

Perc.OwnerOcc -0.233 2.489 54.039 51.550

Perc.Minority 0.058 0.833 50.890 50.057

MedianInc (in $K) 0.074 0.638 48.805 48.167

Adjustment: β̂>(2)(X̄full − X̄) = -0.768

Table 4: Diagnostic Table for Los Angeles Data Example

6 Proofs of The Main Results

We prove the main results in this section. The proofs of other technical results are provided

in the Appendix.

6.1 Proofs for the Properties of the Random Design Regression Model

Proof of Lemma 2.1. Since

E
(
Y − ~X>β

)2
= EY 2 + β>

(
E ~X ~X>

)
β − 2β>E

(
~XY
)

=EY 2 +
(
β − (E ~X ~X>)−1E( ~XY )

)> (
E ~X ~X>

)(
β − (E ~X ~X>)−1E( ~XY )

)
− E( ~XY )>

(
E ~X ~X>

)−1
E( ~XY ),

we know β = arg minγ E(Y − ~X>γ)2 = (E ~X ~X>)−1E( ~XY ). Besides,

E( ~Xδ) = E ~XY − E ~X ~X>β = E ~XY − E ~X ~X> ·
(
E ~X ~X>

)−1
E( ~XY ) = 0.

Then Eδ = 0,EXδ = 0 have been proved since ~X = (1, X>)>. Finally,

~µ>β =E ~X>
(
E ~X ~X>

)−1
E ~XY = (1, µ>) ·

[
1 µ>

µ Cov(X) + µµ>

]−1

·

(
EY

EXY

)

=(1,

p︷ ︸︸ ︷
0, . . . , 0)

(
EY

EXY

)
= EY = θ,

which has finished the proof of this lemma. �
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Proof of Proposition 2.1. First, Ȳ is the sample mean, which is clearly an unbiased

estimator for the population mean θ. In addition, since {Yi}ni=1’s are i.i.d. samples, it can

be calculated that

nVar(Ȳ) =Var(Yi) = Var(δi) + Var( ~Xiβ) + 2Cov(δi, ~Xiβ)

Lemma 2.1
= τ2 + β>(2)E(X − µ)(X − µ)>β(2).

(56)

�

6.2 Proofs for Ideal Semi-supervised Inference Estimator θ̂LS

Proof of Theorem 2.1.

We first show that θ̂LS is invariant under simultaneous affine translation on both X and

µ. Specifically, suppose Xk = U · Zk + α, (k = 1, · · · , n) for any fixed invertible matrix

U ∈ Rp×p and vector α ∈ Rp. Then one has

~Xk =

[
1 0

α U

]
~Zk, ~X = ~Z

[
1 α>

0 U>

]
,

θ̂LS =~µ>
(
~X> ~X

)−1
~X>Y

=(1, µ>)

([
1 0

α U

]
~Z>~Z

[
1 α>

0 U>

])−1 [
1 0

α U

]
~Z>Y

=(1, µ>)

[
1 α>

0 U>

]−1 (
~Z>~Z

)−1
~Z>Y

=(1, (U−1(µ− α))>)
(
~Z>~Z

)−1
~Z>Y.

Since EZk = U−1(µ − α), we know θ̂LS is invariant under simultaneous affine translation

on X and µ.

Based on the affine transformation invariant property, we only need to consider the

situation when EX = µ = 0, Cov(X) = Ip, where Ip is the p-by-p identity matrix. Next

we discuss the asymptotic behavior for θ̂LS. For simplicity, we note 1n = (

n︷ ︸︸ ︷
1, · · · , 1)>,

P~X = ~X(~X> ~X)−1 ~X> ∈ R(p+1)×(p+1) as the projection matrix onto the column space of ~X.

22



X̄ = 1
n

∑n
k=1Xk. Clearly, 1n lies in the column space of ~X, which means P~X1n = 1n. Then,

θ̂LS − θ =~µ>β̂ − θ = ~µ>
(
~X> ~X

)−1
~X>Y − θ

=~µ>
(
~X> ~X

)−1
~X>
(
~Xβ + δ

)
− θ = ~µ>

(
~X> ~X

)−1
~X>δ

=
1>n
n
~X
(
~X> ~X

)−1
~X>δ − 1>n

n
(~X− 1n~µ

>)
(
~X> ~X

)−1
~X>δ

=
1>nP~X
n

δ − (0,
1>n
n

X)
(
~X> ~X

)−1
~X>δ

=
1>n
n
δ −

(
0,

1n
n

X

)(
1

n
~X> ~X

)−1( 1

n
~X>δ

)
=δ̄ −

(
0, X̄>

)( 1

n
~X> ~X

)−1( 1

n
~X>δ

)
,

(57)

n− p− 1

n
MSE =

1

n
‖Y − ~Xβ̂‖22 =

1

n

∥∥∥∥δ + ~Xβ − ~X
(
~X> ~X

)−1
~X>(Xβ + δ)

∥∥∥∥2

2

=
1

n

∥∥∥δ − ~X(~X> ~X)−1 ~X>δ
∥∥∥2

2
=

1

n

(
δ>δ − δ> ~X(~X> ~X)−1 ~X>δ

)
=

(
1

n
δ>δ −

(
1

n
~X>δ

)>( 1

n
~X> ~X

)−1( 1

n
~X>δ

))
.

(58)

Since P is fixed and has finite second moment, by law of large number and central limit

theorem, one can show as n→∞, p = o(n1/2),

√
nδ̄

d→ N(0, τ2),

1

n
δ>δ =

1

n

n∑
k=1

δ2
k

d→ Eδ2 = τ2,

∥∥∥∥1>nX

n

∥∥∥∥2

2

d→ ‖EX‖22 = 0,

∥∥∥∥∥ ~X>δn
∥∥∥∥∥

2

2

d→ ‖EXδ‖22 = 0,

1

n
~X> ~X

d→ E ~X ~X> =

[
1 0

0 Cov(X)

]
.

Since Cov(X) invertible, we know(
1

n
~X> ~X

)−1
d→

[
1 0

0 Cov(X)−1

]
.

Based on the asymptotic distributions above and (57), (58), we know

√
n
(
θ̂LS − θ

)
→ N(0, τ2)
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n− p− 1

n
MSE → τ2,

in the case that PX fixed and n→∞. �

Proof of Theorem 2.2. First, based on the proof of Theorem 2.1, the affine transformation

on X would not affect the property of θ̂LS. Without loss of generality, we assume that

EX = 0, Var(X) = I. In other words, Z = X. Next, based on formulas (57) and (58), we

have

√
n(θ̂LS − θ)/τ =

√
nδ̄

τ
−
√
n

τ
(0, X̄>)

(
1

n
~X> ~X

)−1( 1

n
~X>δ

)
,∣∣∣∣∣

√
n

τ
(0, X̄>)

(
1

n
~X> ~X

)−1( 1

n
~X>δ

)∣∣∣∣∣ ≤
∥∥∥∥1nX

>

n3/4

∥∥∥∥
2

· λ−1
min

(
1

n
~X> ~X

)
·

∥∥∥∥∥ ~X>δn3/4τ

∥∥∥∥∥
2

,

then we only need to prove the following asymptotic properties in order to finish the proof

of Theorem 2.2: √
nδ̄

τ

d→ N(0, 1), (59)∥∥∥∥1nX

n3/4

∥∥∥∥
2

d→ 0,

∥∥∥∥∥ ~X>δn3/4

∥∥∥∥∥
2

/τ
d→ 0, (60)

For some uniform t1 > t2 > 0,

P

(
t1 ≥ λmax

(
1

n
~X> ~X

)
≥ λmin

(
1

n
~X> ~X

)
≥ t2

)
→ 1.

(61)

Here λmax, λmin(·) represent the largest and least eigenvalues of the given matrix. Next we

will show (59), (60) and (61) separately.

• Based on the assumption of the theorem, δ1
τ , · · · ,

δn
τ are i.i.d. samples with mean 0,

variance 1 and bounded (2 + 2ε)-th moment, (59) holds by Lyapunov’s central limit

theorem.

• Since X1, · · · , Xk are i.i.d. samples with mean 0 and covariance Ip, we can calculate

that

E
∥∥∥∥1nX

>

n3/4

∥∥∥∥2

2

=
1

n3/2
· nE‖X‖22 =

p

n1/2
→ 0, as n→ 0.

Since X1δ1, · · · , Xnδn are i.i.d. samples with mean 0 and satisfying (17), we have

E

∥∥∥∥∥ ~X>δn3/4

∥∥∥∥∥
2

2

=
1

n3/2
· nE‖ ~Xδ‖22 ≤

M3

n1/2
E‖X‖22 · Eδ2 =

p

n1/2
M3τ

2

Thus, E‖ ~X>δ
n3/4 ‖22/τ2 → 0 as n→∞. Thus, we have (60).

• For (61), since EX = 0,Cov(X) = Ip and Assumption (16) holds, (61) is directly

implied by Theorem 2 in Yaskov (2014). �
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6.3 Proofs for Ordinary Semi-supervised Inference Estimator θ̂SSLS

Proof of Theorems 2.3 and 2.4. We start with the proof of (23). From the proof of

Theorems 2.1 and 2.2, we have proved that

MSE

τ2
→ 1.

By the basic property of sample covariance and Proposition 2.1, we also have

nσ̂2
Y

Var(Y )

d→ 1, Var(Y ) = τ2 + Eβ>(2)Σβ(2).

Therefore, under either the settings of Theorems 2.3 or 2.4,

m
m+nMSE + n

m+n σ̂
2
Y

τ2 + n
n+mVar(β>(2)X)

=
m

m+nMSE + n
m+n σ̂

2
Y

m
m+nτ

2 + n
m+nVar(Y )

d→ 1, as n→∞, (62)

which proves (23).

The proof of (22) is more complicated. In the rest of proof, again we use C as constants

does not depends on n or m, whose exact value may vary in different scenarios. Again,

since θ̂SSLS is affine transformation invariant, without loss of generality we can assume that

EX = 0, EXX> = Ip. Thus, Z = X. Similarly as (57), the following decomposition for

θ̂SSLS − θ holds,

θ̂SSLS − θ =~̂µ>
(
~X> ~X

)−1
~X>Y − θ = ~̂µ

(
~X> ~X

)−1
~X>(~Xβ + δ)− θ

=(~̂µ>β − θ) + ~̂µ(~X> ~X)−1 ~X>δ

=(~̂µ− ~µ)>β +

(
1>n
n
~X
(
~X> ~X

)−1
~X>δ

)
+

(
~̂µ− 1n

n
~X

)> (
~X> ~X

)−1
~X>δ

=(~̂µ− ~µ)>β +

(
1>nP~X
n

)
δ +

(
~̂µ> − 1>n

n
~X

)(
~X> ~X

)−1
~X>δ

=(~̂µ− ~µ)>β + δ̄ −
(
0, X̄− µ̂

)> (~X> ~X)−1
~X>δ.

(63)

In order to prove these two theorems, we only need to show the following two asymptotic

equalities: (
~̂µ− ~µ

)>
β + δ̄√(

τ2

n + n
n(n+m)β

>
(2)EXcX>c β(2)

) → N(0, 1), (64)

(
0, µ̂− X̄

)> (~X> ~X)−1
~X>δ√

τ2/n

d→ 0. (65)

We show them separately below under both settings that p is fixed (Theorem 2.3) and p

grows (Theorem 2.4). For convenience, we denote T = β>(2)EXcX
>
c β(2), bj = X>j,cβ(2), j =

1, · · · ,m+ n. Clearly Eb2j = T .
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1. We first show (64). The left hand side of (64) can be further written as(
~̂µ− ~µ

)>
β + δ̄ = (1− 1)β1 + (µ̂− µ)β(2) + δ̄

=

n∑
i=1

(
− m

n(n+m)
(Xi − µ)>β(2) +

1

n
δi

)
+

n+m∑
i=n+1

1

n+m
(Xi − µ)>β(2)

:=
n∑
j=1

A
(n)
j +

n+m∑
j=n+1

B
(n)
j := Sn

Here A
(n)
j = m

n(n+m)bj+ 1
nδj , B

(n)
j = 1

n+mbj . It is easy to calculate that EA(n)
i = EB(n)

j =

0, EA(n)2
i = τ2

n2 + m2

n2(n+m)2
T , EB(n)2

j = 1
(n+m)2

T ,

s2
n := ES2

n =

n∑
i=1

EA(n)2
i +

n+m∑
j=n+1

EB(n)2
j =

τ2

n
+

mT

n(n+m)
. (66)

Next we analyze the asymptotic distribution for Sn separately under both settings when

p is fixed and p is growing. Specifically, we use Lindeberg-Feller central limit theorem

for the fixed p case under second moment condition and Lyapunov central limit theorem

for growing p under (2 + κ)-th moment condition.

• Under the setting of Theorem 2.3, i.e., when p and the distribution P (Y,X1, · · · , Xp)

is fixed, we check the following Lindeberg-Feller condition:

∀ε > 0,

lim
n→∞

1

s2
n

 n∑
j=1

E
(
A

(n)2
j I{A(n)2

j ≥ εs2
n}
)

+

m+n∑
j=n+1

E
(
B

(n)2
j I{B(n)2

j ≥ εs2
n}
) = 0.

(67)

Here I{·} is the indicator random variable for given event. Note that, for any

x1, x2 ∈ R,

(x1 + x2)2I{(x1 + x2)2 ≥ s2
n} ≤ 4 max(x2

1, x
2
2)I{4 max(x2

1, x
2
2) ≥ sn}

≤4x2
1I{x2

1 ≥ s2
n/4}+ 4x2

2I{x2
2 ≥ s2

n/4},
(68)

we have

E
(
A

(n)2
j I{|A(n)

j |
2 ≥ εs2

n}
)
≤ E

(
A

(n)2
j I{A(n)2

j ≥ ετ2/n}
)

≤E
(

4
m2

n2(n+m)2
b2jI

{
m2

n2(n+m)2
b2j ≥

ετ2

4n

})
+ E

(
4

1

n2
δ2
j I

{
1

n2
δ2
j ≥

ετ2

4n

})
≤ 4

n2

(
E
(
b2jI

{
b2j ≥

nετ2

4

})
+ E

(
δ2
j I

{
δ2
j ≥

nετ2

4

}))
.
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Similarly one can calculate that

E
(
B

(n)2
j I{|B(n)

j |
2 ≥ εs2

n}
)
≤ 1

n(n+m)
E
(
b2jI

{
b2j ≥

εnτ2

4

})
.

Therefore,

1

s2
n

 n∑
j=1

E
(
A

(n)2
j I{A(n)2

j ≥ εs2
n}
)

+
m+n∑
j=m+1

E
(
B

(n)2
j I{B(n)2

j ≥ εs2
n}
)

≤ n

τ2
·
[

5

n
E
(
b2jI

{
b2j ≥

nετ2

4

})
+

4

n
E
(
δ2
j I

{
δ2
j ≥

nετ2

4

})]
≤ 5

τ2
E
(
b2I
{
b2 ≥ nετ2/4

})
+

4

τ2
E
(
δ2I

{
δ2 ≥ nετ2/4

})
→ 0.

By Lindeberg-Feller CLT, we know Sn/sn → N(0, 1), which implies (64).

• Under the setting of Theorem 2.4, i.e., when the distribution P is not fixed and

p is growing, the proof as we also have (2 + 2κ)-moment conditions. In this case,

Lyapunov’s condition for central limit theorem will be used as the main tool. One

can check that

E|Ai|2+2κ ≤C

(
E
(

m

n(n+m)
bi

)2+2κ

+ E
(
δi
n

)2+2κ
)

(15)

≤ C

(
m

n(n+m)

)2+2κ

T 1+κ + C
( τ
n

)2+2κ
,

E|Bj |2+2κ =
1

(n+m)2+2κ
E
(

(Xi − µ)>β(2)

)2+2κ (16)

≤ 1

(n+m)2+2κ
T 1+κ.

Thus,

n∑
i=1

E|A(n)
i |

2+2κ +
n+m∑
j=n+1

E|B(n)
j |

2+2κ

≤C

{(
m

n(n+m)

)2+2κ

n+

(
1

n+m

)2+2κ

m

}
T 1+κ + C

τ2+2κ

n1+2κ

≤Cm(m1+2κ + n1+2κ)

n1+2κ(n+m)2+2κ
T 1+κ + C

τ2+2κ

n1+2κ

≤C
(

m

n1+2κ(n+m)
T 1+κ +

τ2+2κ

n1+2κ

)
(69)

On the other hand,

s2+2κ
n =

(
τ2

n
+

mT

n(n+m)

)1+κ

≥ τ2+2κ

n1+κ
+

m1+κT 1+κ

n1+κ(n+m)1+κ
. (70)
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Since as n,m→∞,
m

n1+2κ(n+m)
T 1+κ

m1+κT 1+κ

n1+κ(n+m)1+κ

=

(
n+m

nm

)κ
→ 0,

τ2+2κ/(n1+2κ)

τ2+2κ/((n1+κ)
=

1

nκ
→ 0,

combining (69) and (70), we have

lim
n→∞

1

s2+2κ
n

 n∑
i=1

E|A(n)
i |

2+2κ +

n+m∑
j=n+1

E|B(n)
j |

2+2κ

 .

By Lyapunov’s central limit theorem, we know n∑
i=1

A
(n)
i +

n+m∑
j=n+1

B
(n)
j

/√
m

n(n+m)
T +

τ2

n
→ N(0, 1),

which implies (64).

2. Next, we show (65) under both settings of fixed p and growing p. We can calculate that∣∣∣∣(0, µ̂− X̄)>
(
~X> ~X

)−1
~X>δ

∣∣∣∣√
τ2/n

≤
‖µ̂− X̄‖2 · λ−1

min(~X> ~X) · ‖~X>δ‖2√
τ2/n

≤n1/4‖µ̂− X̄‖2 · λ−1
min

(
1

n
~X> ~X

)
·

∥∥∥∥∥ ~X>δn3/4τ

∥∥∥∥∥
2

.

• We first consider the simpler case where P is fixed, i.e., the setting in Theorem 2.3.

The proof is similar to the one of Theorem 2.1. Note that EXi = 0, E ~X ~X> = Ip+1,

E ~Xδ = 0, thus by law of large number,

1

n
~X>δ

d→ 0,
1

n
~X> ~X

d→ Ip,

~̂µ =
1

n+m
~Xk → (1, 0, · · · , 0)>,

~X1n
n

=
1

n

n∑
k=1

~Xk → (1, 0, · · · , 0)>.
(71)

These facts together yields (65).

• Now we move to the case that p grows, i.e., the setting in Theorem 2.4. Similarly

as the proof of Theorem 2.2, we have∥∥∥∥∑n
i=1Xi

n3/4

∥∥∥∥
2

d→ 0,

∥∥∥∥∥
∑n

i=1
~Xiδi

n3/4

∥∥∥∥∥
2

/τ
d→ 0,

∥∥∥∥∥n1/4
∑n+m

i=1 Xi

(m+ n)

∥∥∥∥∥
2

d→ 0,

∃t1 ≥ t2 > 0, such that

P

(
t1 ≥ λmax

(
1

n

n∑
i=1

~Xi
~X>i

)
≥ λmin

(
1

n

n∑
i=1

~Xi
~X>i

)
≥ t2

)
→ 1.

Similarly these imply (65).

To sum up, we have finished the proof of Theorems 2.3 and 2.4. �
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6.4 Proofs for the analysis of `2-risk

Proof of Theorems 2.5. The idea of the proof for Theorem 2.5 is to first introduce a “good

event” Q such that P (Qc) is exponentially small; then prove that E
[
n
(
θ̂LS − θ

)2
1Q

]
has

upper bound as (30) and (31). For convenience, for any subset Ω ⊆ {1, . . . , n}, we introduce

the following notations

~Ξ =
1

n

n∑
k=1

~Zk ~Z
>
k ,

~Ξ−Ω =
1

n

n∑
k=1,k /∈Ω

~ZkZ
>
k . (72)

Also, we note poly(n, p) for some polynomial of n and p. We also introduce the following

lemmas. The proofs are postponed to the Appendix.

Lemma 6.1 Suppose ~Z = (~Z1, · · · , ~Zn)> satisfies Assumption 2 (28) or Assumption 2’

(29).

• (Theorem 5.39 in Vershynin (2012b)) We have the following concentration in-

equality,

P

(∥∥∥∥∥ 1

n

n∑
k=1

~Zk ~Z
>
k − E~Zk ~Z>k

∥∥∥∥∥ > C

√
p

n
+ t

)
≤ 2 exp(−cnt2). (73)

Here C, c are constants only depending on M5 in Assumption (28) or M6 in Assump-

tion (29).

• For all q ≥ 2, the following moment condition holds for some constant Cq that only

depends on q under either Assumption 2 (28) or Assumption 2’ (29),

E

∥∥∥∥∥
n∑
k=1

Zk

∥∥∥∥∥
q

2

≤ Cq (pn)q/2 . (74)

• The following moment condition holds for
∑n

k=1
~Zkδk and 2 ≤ q < 4:

E

∥∥∥∥∥
n∑
k=1

~Zkδk

∥∥∥∥∥
q

2

≤ Cq(pn)q/2 (75)

under either Assumption 1+2 ( (27), (28)) or 1+2’ ( (27), (29)).

Lemma 6.2 Suppose A,B are two squared matrices, A,A + B are both invertible. Then

for all q ≥ 0, one has the following expansion for (A+B)−1,

(A+B)−1 =

q−1∑
k=0

(
−A−1B

)k
A−1 +

(
−A−1B

)q
(A+B)−1. (76)
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For the proof of Theorem 2.5, we first consider the probability that θ̂LS 6= θ̂1
LS. Note

µ̄ = max(Y)+min(Y)
2 , then we have

P
(
θ̂LS 6= θ̂1

LS

)
= P

(
|θ̂LS − µ̄| > (n+

1

2
)(max(Y)−min(Y))

)
≤P

(∥∥∥∥∥
(

1

n
~X> ~X

)−1
∥∥∥∥∥ ·
√∥∥∥∥ 1

n
~X> ~X

∥∥∥∥ · max(Y)−min(Y)

2
> (n+

1

2
)(max(Y)−min(Y))

)
(73)

≤ exp(−cn), for large n.

Set the event Q as

Q =

{
θ̂LS = θ̂1

LS, max
1≤i,j,k≤n

{∥∥∥~Ξ − Ip+1

∥∥∥ , ∥∥∥~Ξ−{i,j,k} − Ip+1

∥∥∥} ≤ C1

n1/4

}
(77)

for some large constant C1 > 0. Based on Lemma 6.1 and the fact that
√
p/n = o(n−1/4),

we have

P (Qc) ≤P
(∥∥∥~Σ− Ip+1

∥∥∥ > C1n
−1/4

)
+
∑
i,j,k

P
(∥∥∥~Σ−{i,j,k} − Ip+1

∥∥∥ > C1n
−1/4

)
+ P

(
θ̂LS 6= θ̂1

LS

)
≤Cn3 · exp(−cn1/2) for large n.

(78)

Recall the composition of θ̂LS − θ in (57), thus,

E
(

1Q(θ̂LS − θ)2
)

=E1Qδ
2 + E

1Q

(
(0,

1n
n

Z>)

(
1

n
~Z>~Z

)−1

(
1

n
~Z>δ)

)2


− 2E

[
1Qδ̄(0,

1n
n

Z>)

(
1

n
~Z>~Z

)−1

(
1

n
~Z>δ)

]

=E1Qδ̄
2

+ E

1Q

(
(0,

1n
n

Z>)

(
1

n
~Z>~Z

)−1

(
1

n
~Z>δ)

)2


− 2

n∑
k,l,m=1

1

n3
E
[
1Qδk(0, Z

>
l )~Ξ

−1 ~Zmδm

]

=E1Qδ̄
2

+ E

1Q

(
(0,

1n
n

Z>)

(
1

n
~Z>~Z

)−1

(
1

n
~Z>δ)

)2


− 2(n− 1)

n2
E
[
1Qδ1(0, Z>1 )~Ξ

−1 ~Z2δ2

]
− 2(n− 1)

n2
E
[
1Qδ

2
1(0, Z>2 )~Ξ

−1 ~Z1

]
− 2(n− 1)

n2
E
[
1Qδ1(0, Z>2 )~Ξ

−1 ~Z2δ2

]
− 2

n2
E
[
1Qδ

2
1(0, Z>1 )~Ξ

−1 ~Z1

]
− 2(n− 1)(n− 2)

n2
E
[
1Qδ1(0, Z>2 )~Ξ

−1 ~Z2δ3

]
.

(79)
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The analyses for each of the seven terms in (79) are relatively complicated, which we

postpone to Lemma 6.3 in the Appendix. Based on (79) and Lemma 6.3, one has

E1Q

(
θ̂LS − θ

)2
=

1

n
τ2 +O(poly(p, n) exp(−cn1/2))

+
1

n2

(
2(Eδ2Z)>E(ZZ>Z) +

(
tr(EZδZ>)

)2
+ 3‖EZδZ>‖2F − Etr(Zδ2Z>) + 2τ2

)
.

Besides,

E1Qc
(
θ̂1

LS − θ
)2
≤ E1Qc(2n‖Y ‖∞ + EY )2

≤poly(n)(EY 2+2ε)
1

1+ε · (E1Qc)
ε

1+ε ≤ poly(n) exp(−n1/2) ≤ poly(n) exp(−n1/2).

(80)

Our final step gets back to the `2-risk of θ̂1
LS:

E
(
θ̂1

LS − θ
)2

= E1Q

(
θ̂1

LS − θ
)2

+ E1Qc
(
θ̂1

LS − θ
)2

=
1

n
τ2 +O(poly(p, n) exp(−cn1/2))

+
1

n2

(
2(Eδ2Z)>E(ZZ>Z) +

(
tr(EZδZ>)

)2
+ 3‖EZδZ>‖2F − Etr(Zδ2Z>) + 2τ2

)
.

In fact, given Z = Σ−1/2X, we have

(Eδ2Z)>E(ZZ>Z) = (EΣ−1/2Xcδ
2)>E(Σ−1/2XcZ

>Σ−1Xc)

=E
(
δ2Xc

)> · E(Σ−1XcX
>
c Σ−1Xc

)
,

tr
(
EZδZ>

)
= tr

(
EΣ−1/2XδX>Σ−1/2

)
= tr

(
Σ−1Σδ1

)
,

Etr
(
Zδ2Z>

)
= Etr

(
Σ−1/2Xδ2X>Σ−1/2

)
= tr

(
Σ−1Σδ2

)
.

Therefore, we have finished the proof of Theorem 2.5. �
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Appendix: Additional Proofs

Additional Proofs for `2-risk Analysis

Proof of Theorem 2.6. Similarly to the previous proofs, we can transform X, Y and

assume µ = 0,Cov(X) = Ip, X = Z without loss of generality. We start by introducing the

following notations and decomposition in (63):

X = [X1 · · · Xn]>, Xfull = [X1 · · · Xn+m]>, Xadd = [Xn+1 · · · Xn+m]>,

X̄ =
1

n

n∑
k=1

Xk, X̄full =
1

n+m

n+m∑
k=1

Xk, X̄add =
1

m

n+m∑
k=n+1

Xk.

θ̂SSLS − θ = (~̂µ− ~µ)>β + δ̄ + (~̂µ− X̄>)(~X> ~X)−1 ~Xδ

=X̄>fullβ(2) + δ̄ + (0 − X̄ + X̄full)
(
~X> ~X

)−1
~Xδ.

Again we note

~Ξ =
1

n

n∑
k=1

~Xk
~X>k ,

~Ξ−Ω =
1

n

n∑
k=1,k /∈Ω

~Xk
~X>k , if Ω ⊆ {1, · · · , n},

and define the “good” event that

Q =
{
θ̂SSLS = θ̂1

SSLS, max
{∥∥∥~Ξ − Ip+1

∥∥∥ ,∥∥∥~Ξ−{i,j,k} − Ip+1

∥∥∥∀1 ≤ i, j, k ≤ n} ≤ C1n
−1/4

}
.

Then,

E(θ̂1
SSLS − θ)2 = E1Q(θ̂1

SSLS − θ)2 + E1Qc(θ̂
1
SSLS − θ)2

=E
(
X̄>fullβ(2) + δ̄

)2
1Q + E

(
(0 − X̄ + X̄full)

(
~X> ~X

)−1
~Xδ

)2

1Q

+ 2E
(
X̄>fullβ(2) + δ̄

)(
(0,−X̄ + X̄full)

(
~X> ~X

)−1
~Xδ

)
1Q + E1Qc(θ̂

1
SSLS − θ)2.

(81)

In the analysis below, we analyze the four terms in (81) separately.

• First of all, since δ and ~X are with mean zero and uncorrelated,

E
(
X̄>fullβ(2) + δ̄

)2
= Var(X̄>fullβ(2)) + Var(δ̄) =

τ2

n
+
β>(2)E(X − µ)(X − µ)>β(2)

m+ n
.

Besides,

E
(
X̄>fullβ(2) + δ̄

)2
1Qc ≤

(
E
(
X̄>fullβ(2) + δ̄

)4
)1/2

(P (Qc))1/2

=poly(n)
(
E(Ȳ − θ)4

)1/2
exp(−cn1/2) ≤ poly(n) exp(−cn1/2).
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Thus,

E
(
X̄>β(2) + δ̄

)2
1Q = E

(
X̄>β(2) + δ̄

)2
− E

(
X̄>β(2) + δ̄

)2
1Qc

=
τ2

n
+
β>(2)E(X − µ)(X − µ)>β(2)

m+ n
+O

(
poly(n) exp(−cn1/2)

)
.

(82)

• Secondly,

E
(

(0 − X̄ + X̄full)
(
~X> ~X

)−1
~Xδ

)2

1Q

≤2E
(
‖X̄‖22 + ‖X̄full‖22

)
·
(∥∥∥∥(~X> ~X)−1

∥∥∥∥)2

1Q ·
∥∥∥~Xδ

∥∥∥2

2

≤C
(
E‖X̄‖42 + E‖X̄full‖42

)
·
(
C

n

)2

·
(
E‖~Xδ‖42

)1/2

Lemma 6.3
≤ C

(
p2

n2

)
.

(83)

• The analysis of the third term in (81) is more complicated. We first decompose it as

E
(
X̄>fullβ(2) + δ̄

)(
(0,−X̄ + X̄full)

>
(
~X> ~X

)−1
~Xδ

)
1Q

=− E
(
X̄>fullβ(2) + δ̄

)(
0,

m

n(n+m)
1>nX

)(
~X> ~X

)−1
~Xδ1Q

+ E
(
X̄>fullβ(2) + δ̄

)(
0,

1

n+m
1>mXadd

)(
~X> ~X

)−1
~Xδ1Q

=− m

n(n+m)

n∑
i,j,k=1

(
1

n+m
X>i β(2) +

1

n
δi) (0, Xj)

>
(
~X> ~X

)
~Xkδk1Q

− m

n(n+m)2

n+m∑
i=n+1

n∑
j,k=1

(X>i β(2)) (0, Xj)
>
(
~X> ~X

)
~Xkδk1Q

+
1

n+m

n∑
i,k=1

n+m∑
j=n+1

(
1

m+ n
X>i β(2) +

1

n
δi) (0, Xj)

>
(
~X> ~X

)
~Xkδk1Q

+
1

(n+m)2

n+m∑
i,j=n+1

n∑
k=1

X>i β(2) (0, Xj)
>
(
~X> ~X

)
~Xkδk1Q.

(84)

The evaluation of the four terms above are provided separately in Lemma 6.3. There-

fore,

E
(
X̄>β(2) + δ̄

)(
(0,−X̄ + X̄full)

(
~X> ~X

)−1
~Xδ

)
1Q ≤ C

p2

n2
. (85)

• Similarly to (80) in Theorem 2.1, one can show

E1Qc(θ̂SSLS − θ)2 = poly(n) exp(−n1/2).
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Combining (81) and the separate analyses above, we have finished the proof for this theorem.

�

Proof of Propositions 2.2. Similarly to the proofs for the previous theorems, we can

linearly transform X and without loss of generality assume EX = 0,Var(X) = Ip. We then

consider θ̂LS − θ = ~µ>
(
~X> ~X

)−1
~X>Y − θ. Note that

1

n
~X> ~X =

[
1 X̄>

X̄ Σ̂X + X̄X̄>

]
,

1

n
X>X = Σ̂X + X̄X̄>,

where X̄ = 1
n

∑n
k=1Xk, Σ̂X = 1

n

∑n
k=1(Xk − X̄)(Xk − X̄)>. The block-wise matrix inverse

formula yields (
1

n
~X> ~X

)−1

=

[
1 + X̄>Σ̂

−1
X X̄ −X̄>Σ̂

−1
X

−Σ̂
−>
X X̄ Σ̂

−1
X

]
. (86)

By the expansion in (57), we have

θ̂LS − θ = δ̄ −
(

0,
1n
n

X>
)(

1

n
~X> ~X

)−1( 1

n
~X>δ

)
=

(
1>n
n

+ X̄>Σ̂
−1
X X̄

1>n
n
− 1

n
X̄>Σ̂

−1
X X

)
δ.

When X ∈ Rn×p are i.i.d. standard normal, it is commonly known that X̄, Σ̂X and δ are all

independent, and X̄
iid∼ N(0, 1/n), Σ̂

−1
X satisfies inverse-Wishart distribution n ·W−1

p (Ip, n−
1), and its expectation is EΣ̂

−1
X = n

n−p−2Ip. Therefore,

E
(
θ̂LS − θ

)2
= Eδ2 · E

∥∥∥∥1>n
n

+ X̄>Σ̂
−1
X X̄

1>n
n
− 1

n
X̄>Σ̂

−1
X X

∥∥∥∥2

2

=τ2 · E
(

1

n
(1 + X̄>Σ̂

−1
X X̄)2 +

1

n
(X̄>Σ̂

−1
X (X̄X̄> + Σ̂X)Σ̂

−1
X X̄)− 2

n
(X̄Σ̂

−1
X X̄ + (X̄Σ̂

−1
X X̄)2)

)
=τ2 · E

(
1

n
+

1

n
X̄>Σ̂

−1
X X̄

)
=
τ2

n

(
1 + tr

(
EΣ̂
−1
X · EX̄X̄>

))
=
τ2

n

(
1 + tr

(
nIp

n− p− 2
· Ip
n

))
=
τ2

n
+

p

n(n− p− 2)
τ2.

The calculation for E(θ̂SSLS − θ)2 is similar. Since θ̂SSLS − θ = ~̂µ>
(
~X> ~X

)−1
~X>Y − θ, by

the calculation in Theorem 2.3, we have

θ̂SSLS − θ
(63)
= (~̂µ− ~µ)>β + δ̄ +

(
~̂µ> − 1>n

n
~X

)(
~X> ~X

)−1
~X>δ

=X̄>fullβ(2) +

(
1>n
n

+
m

m+ n
X̄>Σ̂

−1
X X̄

1n
n
− m

n(m+ n)
X̄>Σ̂

−1
X X

)
δ

+
1

m+ n
1>mXadd(−Σ̂

−1
X X̄

1>n
n

+
1

n
Σ̂
−1
X X)δ.
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Since Xadd, δ and X are all independent with mean 0, it is easy to check that any two of

the three terms above are uncorrelated. Thus,

E
(
θ̂SSLS − θ

)2

=E
(
X̄>fullβ(2)

)2
+ E

[(
1>n
n

+
m

m+ n
X̄>Σ̂

−1
X X̄

1>n
n
− m

n(m+ n)
X̄>Σ̂

−1
X X

)
δ

]2

+

[
1

m+ n
1>mXadd(−Σ̂

−1
X X̄

1>n
n

+
1

n
Σ̂
−1
X X)δ

]2

,

E
(
X̄>fullβ(2)

)2
=

1

m+ n
β>(2)E(X − µ)(X − µ)>β(2),

E
[(

1>n
n

+
m

m+ n
X̄>Σ̂

−1
X X̄

1>n
n
− m

n(m+ n)
X̄>Σ̂

−1
X X

)
δ

]2

=τ2 · E
∥∥∥∥ 1

n

(
1 +

m

m+ n
X̄>Σ̂

−1
X X̄

)
1>n −

m

n(m+ n)
X̄>Σ̂

−1
X X

∥∥∥∥2

2

=τ2 · E

{
1

n
(1 +

m

n+m
X̄>Σ̂

−1
X X̄)2 +

m2

n2(m+ n)2
X̄>Σ̂

−1
X (nΣ̂X + nX̄X̄)Σ̂

−1
X X̄

− 2

n

(
1 +

m

m+ n
X̄>Σ̂

−1
X X̄

)
· X̄>Σ̂

−1
X X̄ · m

m+ n

}

=τ2

(
1

n
+

m2

(n+m)2n
X̄>Σ̂

−1
X X̄

)
,

(87)

E
[

1

m+ n
1>mXadd(−Σ̂

−1
X X̄

1>n
n

+
1

n
Σ̂
−1
X X)δ

]2

=
τ2

(m+ n)2
E
∥∥∥∥1>mXadd(−Σ̂

−1
X X̄

1>n
n

+
1

n
Σ̂
−1
X X)

∥∥∥∥2

2

=
τ2

(m+ n)2
E

[
1>mXadd

( 1

n
Σ̂
−1
X X̄X̄>Σ̂

−1
X −

2

n
Σ̂
−1
X X̄X̄>Σ̂

−1
X

+
1

n
Σ̂
−1
X (Σ̂X + X̄X̄>)Σ̂

−1
X

)
X>add1m

]

=
τ2

(m+ n)2n
E1>mXaddΣ̂

−1
X X>add1m =

τ2m

(m+ n)2n
EX>n+1Σ̂

−1
X Xn+1.

To sum up,

nE(θ̂SSLS − θ)2 =τ2 +
n

m+ n
β>(2)E(X − µ)(X − µ)>β(2)

+
mEσ2(X)

m+ n

(
m

m+ n

(
nEX̄>Σ̂

−1
X X̄

)
+

n

m+ n
EX>n+1Σ̂

−1
X Xn+1

)
.
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Especially when X ∼ N(0, I), 1
nΣ̂
−1
X is independent of X̄ and satisfies the inverse Wishart

distribution. At this point, EΣ̂
−1
X =

nIp
n−p−2 ,

nE
(
θ̂SSLS − θ

)2
= τ2 +

n

m+ n
β>(2)E(X − µ)(X − µ)>β(2) +

m

m+ n
· n

n− p− 2
· τ2,

which has finished the proof of Proposition 2.2. �

Proofs for Oracle Optimality Setting

Detailed Calculation for (40) (Oracle risk for θ̂∗ss). It is easy to see that θ̂∗ss is an

unbiased estimator for θ, thus

E
(
θ̂∗ss − θ

)2
= Var

(
θ̂∗ss

)
=

n∑
k=1

Var

(
Yk
n
− ξ0(Xk)

n
+
ξ0(Xk)

n+m

)
+

n+m∑
k=n+1

Var

(
1

n+m
ξ0(Xk)

)

=nE

(
Var

(
Yk
n
− m

n(n+m)
ξ0(Xk)

∣∣∣∣∣Xk

))

+ nVar

(
ξ(Xk)

n
− m

n(n+m)
ξ0(Xk)

)
+

m

(n+m)2
Var (ξ(Xk))

=n
σ2

n2
+ n

σ2
ξ

(n+m)2
+

mσ2
ξ

(n+m)2

=
σ2

n
+

1

n+m
σ2
ξ ,

which has proved (40). �

Proof of Proposition 3.1. We first consider (41). For any given σ2 > 0, ξ0(·) and PX ,

we consider the following subset of Pξ0(·),σ2 ,

P ′ξ0,PX ,σ2 =
{
P :

∫
Y
P (Y,X) = PX , Y = ξ0(X) + c+ ε,

ε is independent from X, ε ∼ N(0, σ2)
}
.

(88)

Based on sample {Xi, Yi}ni=1, known PX and ξ0(X), we can rewrite the model to

Yi − ξ0(Xi) = c+ εi, i = 1, . . . , n,

where Yi and ξ(Xi) are observable. By classical theory on normal mean estimation with

Gaussian noise,

inf
c̃

sup
c∈R

n (c̃− c)2 = σ2.
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Note for the estimating problem in the original proposition, we target on estimating

θ = E(Y ) = c+ Eξ0(X),

where Eξ0(X) is known. Thus, estimating θ is equivalent to estimating c, which implies

inf
θ̃n

sup
P∈Pξ0,σ2

[
EP
(
n
(
θ̃n − θ

)2
)]
≥ inf

θ̃n

sup
P∈P ′

ξ0,σ
2

[
EP
(
n
(
θ̃n − θ

)2
)]

≥ inf
c̃

sup
c∈R

n (c̃− c)2 = σ2.

Next we aim at the proof for (42). Suppose we are given fixed σ2
ξ , σ

2 > 0 and linear

function ξ0. If ξ0(X) is a constant, εξ always equals 0, the the problem transform to the

first situation.

If ξ0(X) = aX+b with a 6= 0, since we can always normalize Y , without loss of generality

let us assume ξ0(X) = X. We also focus on the situation for p = 1 as the proof for p > 1

essentially follows. Now we consider the following subset of Pss
ξ0,σ2

Y ,σ
2 :

Pss′

σ2
ξ ,σ

2 =
{
P :X ∼ N(µ, σ2

ξ ), Y = X + c+ ε for some constants µ, c,

ε is independent from X, ε ∼ N(0, σ2)
}
.

In this case, EY = θ = c + µ. In order to calculate the minimax rate for estimating θ, we

first consider the Bayes estimator for c and µ under the prior distribution c, µ ∼ N(0, V 2),

where V 2 →∞. It is easy to see that

p0(µ, c) ∝ exp

(
−µ

2 + c2

2V 2

)
,

p(Y,X|µ, c) ∝ exp

(
−1

2

(
σ2
ξ + σ2

σ2
ξσ

2
(X − µ)2 +

1

σ2
(Y − µ− c)2 − 2

σ2
(X − µ)(Y − µ− c)

))
,

p(X|µ, c) ∝ exp

(
− 1

2σ2
ξ

(X − µ)2

)
.

Given observations {Yk, Xk}nk=1 and {Xk}n+m
k=n+1, the posterior distribution for µ and c is

π(µ, c|{Yk, Xk}nk=1, {Xk}n+m
k=n+1) ∝

p
(
{Yk, Xk}nk=1, {Xk}n+m

k=n+1

∣∣µ, c) p0(µ, c)

p
(
{Yk, Xk}nk=1, {Xk}n+m

k=n+1

)
∝

n∏
k=1

exp

(
−1

2

(
σ2
ξ + σ2

σ2
ξσ

2
(Xk − µ)2 +

1

σ2
(Yk − µ− c)2 − 2

σ2
(Xk − µ)(Yk − µ− c)

))

· exp

(
−µ

2 + c2

V 2

)
·
n+m∏
k=n+1

exp

(
− 1

2σ2
ξ

(X − µ)2

)
/p
(
{Yk, Xk}nk=1, {Xk}n+m

k=n+1

)
.
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After simplification for the previous equation, when V 2 →∞, the joint posterior distribu-

tion of µ, c is

µ, c|{Yk, Xk}nk=1, {Xk}n+m
k=n+1 ∼ N

((
1

n+mXk,
1
n(Yk −Xk)

)
,

[
1

(n+m)σ2
ξ

0

0 1
nσ2

])

Therefore, the Bayes estimator for θ = µ+ c is

θ̂bayes = E
(
µ+ c

∣∣∣{Yk, Xk}nk=1, {Xk}n+m
k=n+1

)
= Ȳ − 1

n

n∑
k=1

Xk +
1

n+m

n+m∑
k=1

Xk.

Similarly to the calculation for (40), it is easy to check that θ̂bayes has constant risk for all

different values of c and µ:

nE
(
θ̂bayes − θ

)2
= σ2 +

n

n+m
σ2
ξ .

This implies that θbayes is the minimax estimator for θ in distribution class Pss′

σ2
ξ ,σ

2 . To sum

up, we have finished the proof for this proposition. �

Proof of Theorem 3.1. For any q ≥ 0, we denote

X(q)• = (X1, . . . , Xp, g1(X), . . . , gq(X)), ~X(q)• = (1, X1, . . . , Xp, g1(X), . . . , gq(X)).

Suppose

τ2
(q) = arg min

β(q)∈R1+p+q

E(Y,X)∼P

(
Y − (β(q))> ~X(q)•

)2
.

Clearly, τ2
(q) is an non-increasing sequence of q. Based on either Assumption (i) or (ii) of

Proposition 3.1,

lim
q→∞

τ2
(q) = E (Y − E(Y |X))2 = σ2. (89)

By Proposition 2.1, τ2
(q) + Var((β(q))> ~X(q)•) = Var(Y ). By the law of total variance,

σ2 + Var(ξ(X)) = Var(Y ). Suppose θ̂
(q)
LS , θ̂

(q)
SSLS are the least squares estimator and semi-

supervised least squares estimator with the basis (X1, . . . , Xp, g1(X), . . . , gq(X)). Corre-

sponding, suppose (θ̂
(q)
LS )1 and (θ̂

(q)
SSLS)1 as the refined estimators based on (26). Based on

Theorems 2.5 and 2.6, for fixed q > 0,

lim sup
n→∞

nE
(

(θ̂
(q)
LS )1 − θ

)2
= τ2

(q),

lim sup
n→∞

nE
(

(θ̂
(q)
SSLS)1 − θ

)2
= τ2

(q) + ρVar((β(q))> ~X(q)•) = (1− ρ)τ2
(q) + ρVar(Y ).

By (89),

lim
q→∞

lim sup
n→∞

nE
(

(θ̂
(q)
LS )1 − θ

)2
= σ2,
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lim
q→∞

lim sup
n→∞

nE
(

(θ̂
(q)
SSLS)1 − θ

)2
= (1− ρ)σ2 + ρVar(Y ) = σ2 + ρVar(ξ(X)).

Therefore, there exists sequence {qn} growing slowly enough that guarantees (43) and (44).

Finally, the asymptotic distribution results hold similarly which we do no repeat here. �

Proofs for Application in Average Treatment Effect

Proof of Theorem 5.1. We shall note that d̂SSLS = ~̂µ>β̂t− ~̂µ>β̂c. Based on (63), we have

the following extensions for these two terms separately

~̂µ>β̂t − θt =
(
~̂µ> − ~µ

)>
βt + δ̄t −

(
0, X̄t − µ̂

)> (~X>t ~Xt

)−1
~X>t δt,

~̂µ>β̂c − θc =
(
~̂µ> − ~µ

)>
βc + δ̄c −

(
0, X̄c − µ̂

)> (~X>c ~Xc

)−1
~X>c δc.

Thus d̂SSLS − d has the following decomposition

d̂SSLS − d = (~̂µ>β̂t − θt)− (~̂µ>β̂c − θc)

=δ̄t − δ̄c +
(
~̂µ> − ~µ

)>
(βt − βc)

−
(
0, X̄t − µ̂

)> (~X>t ~Xt

)−1
~X>t δt +

(
0, X̄c − µ̂

)> (~X>c ~Xc

)−1
~X>c δc.

(90)

Essentially the same as Theorem 2.1, one can show

δ̄t − δ̄c + (~̂µ− ~µ)>(βt − βc)
V

→ N(0, 1), (91)

(
0, X̄t − µ̂

)> (~X>t ~Xt

)−1
~X>t δt√

τ2
t /nt

d→ 0,

(
0, X̄c − µ̂

)> (~X>c ~Xt

)−1
~X>c δt√

τ2
c /nc

d→ 0, (92)

Combining (91), (92) and (90), we have

d̂SSLS − d
V

→ N(0, 1).

Next we show the asymptotic property for V̂ . Based on the proof of Theorem 2.3, we have

already shown

lim
nt→∞

MSEt
τ2
t

d→ 1, lim
nc→∞

MSEc
τ2
c

d→ 1.

Besides, β̂t,(2)
d→ βt,(2), β̂c,(2)

d→ βc,(2), Σ̂X
d→ E(X − µ)(X − µ)> as nt, nc → ∞. Thus,

whenever V 2 > 0,

V̂ 2/V 2 d→ 1, as nt, nc →∞.

�
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Proof of Technical Lemmas

We collect all technical proofs in this section.

Proof of Lemma 6.1.

• Part 1 directly follows from Theorem 5.39 in Vershynin (2012a).

• For Part 2, it can be calculated that

E

∥∥∥∥∥
n∑
k=1

Zk

∥∥∥∥∥
q

2

=E

 p∑
i=1

(
n∑
k=1

Zki

)2
q/2

Hölder’s ineq
≤ E

p∑
i=1

∣∣∣∣∣
n∑
k=1

Zki

∣∣∣∣∣
q

· pq/2−1.

By Marcinkiewicz-Zygmund inequality (Chow and Teicher, 2012), under either As-

sumption 2 or 2’, we have

E

∣∣∣∣∣
n∑
k=1

Zki

∣∣∣∣∣
q

M-Z ineq
≤ CqE

(
n∑
k=1

|Zki|2
)q/2

Hölder’s ineq
≤ Cqn

q/2−1
n∑
k=1

E|Zki|q ≤ Cqnq/2−1, i = 1, · · · , p.

Thus, we conclude that (74) holds.

• Finally we consider Part 3. Recall the fact that Eδ = 0, EZkδ = 0. The proof is

similar to Part 2. When 2 ≤ q < 4, under either Assumption 2 or 2’,

E |Zkiδk|q
Hölder’s ineq
≤

(
E|Zki|

4q
4−q
) 4−q

4 (
Eδ4

k

) q
4 ≤ Cq <∞,

E |δk|q ≤
(
Eδ4

k

) q
4 ≤ Cq <∞.

Thus, by Marcinkiewicz-Zygmund inequality (Chow and Teicher, 2012),

E

∣∣∣∣∣
n∑
k=1

Zkiδk

∣∣∣∣∣
q

M-Z ineq
≤ CqE

(
n∑
k=1

|Zkiδk|2
)q/2

Hölder’s ineq
≤ Cqn

q/2−1
n∑
k=1

E|Zkiδk|q ≤ Cqnq/2−1, i = 1, · · · , p.

E

∣∣∣∣∣
n∑
k=1

δk

∣∣∣∣∣
q

M-Z ineq
≤ CqE

(
n∑
k=1

|δk|2
)q/2

Hölder’s ineq
≤ Cqn

q/2−1
n∑
k=1

E|δk|q ≤ Cqnq/2−1, i = 1, · · · , p.
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Therefore,

E

∥∥∥∥∥
n∑
k=1

~Zkδk

∥∥∥∥∥
q

2

=E

( n∑
k=1

δk

)2

+

p∑
i=1

(
n∑
k=1

~Zkiδk

)2
q/2

Hölder’s ineq
≤ E

(∣∣∣∣∣
n∑
k=1

δk

∣∣∣∣∣
q

+

p∑
i=1

∣∣∣∣∣
n∑
k=1

Zki

∣∣∣∣∣
q)
· (p+ 1)q/2−1

≤Cq(p+ 1)q/2nq/2 ≤ Cq(pn)q/2,

which has shown (75). �

Proof of Lemma 6.2. Since

I =

q−1∑
k=0

(
(−A−1B)k − (−A−1B)k+1

)
+ (−A−1B)q

=

q−1∑
k=0

(
−A−1B

)k
(I +A−1B) + (−A−1B)q

=

q−1∑
k=0

(
−A−1B

)k
A−1(A+B) +

(
−A−1B

)q
Right multiply (A+B)−1 to the equation above, we obtain (76). �

Lemma 6.3 (Separate Analysis of (79)) Under the setting of the proof for Theorem

2.5, one has

E
[
1Qδ

2
1(0, Z>2 )~Ξ

−1 ~Z1

]
= − 1

n
tr
((

Eδ2
1Z1

)> · E(Z2Z2Z
>
2

))
− τ2

n
+O

(
p2

n5/4

)
, (93)

E
[
1Qδ1(0, Z>1 )~Ξ

−1 ~Z2δ2

]
= O (exp(−cn) · poly(n, p)) , (94)

E
[
1Qδ1(0, Z>2 )~Ξ

−1 ~Z2δ2

]
= − 1

n
‖EZδZ>‖2F +O

(
p2

n5/4

)
, (95)

E
[
1Qδ

2
1(0, Z>1 )~Ξ

−1 ~Z1δ1

]
= Eδ2Z>Z +O

( p

n1/4

)
, (96)

E
[
1Qδ1(0, Z>2 )~Ξ

−1 ~Z3δ3

]
= O

(
p4

n3

)
, (97)

E
[
1Qδ̄

2
]

=
τ2

n
+O

(
exp(−cn1/2)poly(n)

)
, (98)

E

[
1Q

((
0,

1n
n

Z>
)
~Ξ
−1
(

1

n
~Z>δ

))2
]

=
1

n2

(
tr(EZδ2Z>) +

(
tr(EZδZ>)

)2
+ ‖EZδZ>‖2F

)
+O

(
p2

n2+1/4

)
.

(99)
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Proof of Lemma 6.3. We analyze (93) - (99) separately in the next seven parts.

1. Recall ~Ξ−{1,2} = 1
n

∑n
k=3

~Xk
~X>k , we also denote ~Ξ1,2 = 1

n( ~X1
~X>1 + ~X2

~X>2 ), ~Ξ1,2,3 =
1
n( ~X1

~X>1 + ~X2
~X>2 + ~X3

~X>3 ). Under the event Q, ~Ξ
−1

and ~Ξ
−1

−{1,2} are invertible. By

Lemma 6.2, we can further calculate that

E
[
1Qδ

2
1(0, Z>2 )~Ξ

−1 ~Z1

]
=E
[
1Qδ

2
1(0, Z>2 )

(
~Ξ
−1

−{1,2} − ~Ξ
−1

−{1,2}
1

n
(~Z1

~Z>1 + ~Z2
~Z>2 )~Ξ

−1

−{1,2}

+ ~Ξ
−1

−{1,2}
~Ξ1,2

~Ξ
−1

−{1,2}
~Ξ1,2

~Ξ
−1
)
~Z1

]
.

(100)

We will calculate each term in (100) separately below. To get around the difficulty that

Q is dependent of Z1, Z2, we introduce another event

Q′ =
{
‖~Ξ−{1,2} − I‖ ≤ Cn−1/4

}
.

Based on Lemma 6.1 and p = o(n1/2), we have P (Q′) ≥ 1 − exp(−cn1/2) for some

constant c > 0, Q ⊆ Q′ and Q′ is independent of Z1 and Z2. Then∣∣∣E [1Qδ2
1(0, Z>2 )~Ξ

−1

−{1,2}
~Z1

]∣∣∣
≤
∣∣∣E [1Q′δ2

1(0, Z>2 )~Ξ
−1

−{1,2}
~Z1

]∣∣∣+
∣∣∣E [1Q′\Qδ2

1(0, Z>2 )~Ξ
−1

−{1,2}
~Z1

]∣∣∣
≤
∣∣∣E{EZ2

[
1Q′δ

2
1(0, Z>2 )~Ξ

−1

−{1,2}
~Z1

] ∣∣∣Z1, Z3, . . . , Zn

}∣∣∣
+ E12

Q′\Q · E
[
1Q′\Qδ1‖Z2‖2‖~Ξ

−1

−{1,2}‖‖~Z1‖2
]

Cauchy-Schwarz
≤ 0 + ·

(
Eδ4
) 1

2
(
E1Q′

) 1
8
(
E‖Z2‖8

) 1
8 E
(
‖~Z1‖8

) 1
8 ·
(
E
[
1Q′\Q ~Ξ

−1

−{1,2}

]8
) 1

8

≤O (exp(−cn) · poly(n, p)) .

(101)

Note that

(Eδ2
1Z1)> · E(Z2Z

>
2 Z2) + τ2 =(τ2,Eδ2

1Z1) ·

(
1

EZ2Z
>
2 Z2

)
= Eδ2

1
~Z>1 · E~Z2

~Z>2

(
0

Z2

)
=Eδ2

1(0, Z>2 )> ~Z2
~Z>2 ~Z1,

44



we also have∣∣∣∣∣E
[
1Qδ

2
1(0, Z>2 )~Ξ

−1

−{1,2}
1

n

(
~Z2
~Z>2

)
~Ξ
−1

−{1,2}
~Z1

]

− 1

n

(
Eδ2

1Z1

)> · E(Z2Z2Z
>
2

)
− τ2

n

∣∣∣∣∣
≤ 1

n

∣∣∣E [1Q′δ2
1(0, Z>2 )~Ξ

−1

−{1,2}
~Z2
~Z>2

~Ξ
−1

−{1,2}
~Z1

]
− Eδ2

1(0, Z>2 )~Z2
~Z>2

~Z1

∣∣∣
+

1

n

∣∣∣E [1Q′\Qδ2
1(0, Z>2 )~Ξ

−1

−{1,2}
~Z2
~Z>2

~Ξ
−1

−{1,2}
~Z1

]∣∣∣
≤ 1

n

∣∣∣E [1Q′δ2
1(0, Z>2 )(~Ξ−{1,2} − I)~Z2

~Z>2
~Ξ
−1

−{1,2}
~Z1

]∣∣∣
+

1

n

∣∣∣E [1Q′δ1(0, Z>2 )I ~Z2
~Z>2 (I − ~Ξ

−1

−{1,2})~Z1

]∣∣∣
+

1

n

∣∣∣E1(Q′)cδ
2
1(0, Z>2 )~Z2

~Z>2
~Z1

∣∣∣+
1

n

∣∣∣E [1Q′\Qδ2
1(0, Z>2 )~Ξ

−1

−{1,2}
~Z1
~Z>1

~Ξ
−1

−{1,2}
~Z1

]∣∣∣ .
Similarly as the procedure before, one can show that the formula above is no more than

O
(

p2

n5/4

)
+O (exp(−cn) · poly(n, p)) . Thus,

E
[
1Qδ

2
1(0, Z>2 )~Ξ

−1

−{1,2}
1

n

(
~Z1
~Z>1

)
~Ξ
−1

−{1,2}
~Z1

]
=

1

n

(
Eδ2

1Z1

)> · E(Z2Z2Z
>
2

)
+
τ2

n
+O

(
p2

n5/4

)
.

(102)

Similarly to the calculation of (101) we can calculate that

E
[
1Qδ

2
1(0, Z>2 )

(
~Ξ
−1

−{1,2}
1

n
(~Z1

~Z>1 )~Ξ
−1

−{1,2}

)
~Z1

]
= O (exp(−cn)poly(n, p)) . (103)

∣∣∣E [1Qδ2
1(0, Z>2 )

(
~Ξ
−1

−{1,2}
~Ξ1,2

~Ξ
−1

−{1,2}
~Ξ1,2

~Ξ
−1
)
~Z1

]∣∣∣
≤
∣∣∣E [1Qδ2

1‖Z2‖2(1 + cn−1/4)3‖~Ξ1,2‖2‖~Z1‖2
]∣∣∣ ≤ O( p3

n2

)
.

(104)

Summarizing (100), (101), (102), (103) and (104), we obtain (93).

2. Similarly to the calculation of (93), we have

E
[
1Qδ1(0, Z>1 )~Ξ

−1 ~Z2δ2

]
=E
[
1Qδ1(0, Z>1 )

(
~Ξ
−1

−{1,2} − ~Ξ
−1

−{1,2}
1

n
(~Z1

~Z>1 + ~Z2
~Z>2 )~Ξ

−1

−{1,2}

+ ~Ξ
−1

−{1,2}
~Ξ1,2

~Ξ
−1

−{1,2}
~Ξ1,2

~Ξ
−1
)
~Z2δ2

]
.

(105)

We can calculate each term of (105) separately and similarly as the calculation for (93),

then finish the proof of (94).
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3. Similarly to the calculation of (93) and (94), we have

E
[
1Qδ1(0, Z>2 )~Ξ

−1 ~Z2δ2

]
=E
[
1Qδ1(0, Z>2 )

(
~Ξ
−1

−{1,2} − ~Ξ
−1

−{1,2}
1

n
(~Z1

~Z>1 + ~Z2
~Z>2 )~Ξ

−1

−{1,2}

+ ~Ξ
−1

−{1,2}
~Ξ1,2

~Ξ
−1

−{1,2}
~Ξ1,2

~Ξ
−1
)
~Z2δ2

] (106)

Again based on the decomposition (106), we can similarly prove (95).

4. (96) can be calculated similarly based on the following idea,∣∣∣E [1Qδ1(0, Z>1 )~Ξ
−1 ~Z1δ1

]
− Eδ2Z>Z

∣∣∣
≤
∣∣∣E [1Qδ2

1(0, Z>1 )
(
~Ξ
−1 − I

)
~Z1

]∣∣∣+
∣∣∣E1Qcδ

2Z>Z
∣∣∣

≤O
( p

n1/4

)
+O

(
exp(−cn1/2)poly(p, n)

)
=O

( p

n1/4

)
.

5. Note that we have the following decomposition,

E
[
1Qδ1(0, Z>2 )~Ξ

−1 ~Z3δ3

]
=E

[
1Qδ1(0, Z>2 )

(
~Ξ
−1

−{123} − ~Ξ
−1

−{123}
~Ξ123

~Ξ
−1

−{123} + ~Ξ
−1

−{123}
~Ξ123

~Ξ
−1

−{123}
~Ξ123

~Ξ
−1

−{123}

+ ~Ξ
−1

−{123}
~Ξ123

~Ξ
−1

−{123}
~Ξ123

~Ξ
−1

−{123}
~Ξ123

~Ξ
−1
)
~Z3δ3

]
.

Since Eδ1 = 0, EZ2 = 0, E~Z3δ3 = 0, similarly as the calculation before, we have

E
[
1Qδ1(0, Z>2 )~Ξ

−1

−{123}
~Z3δ3

]
= O

(
exp(−cn1/2)poly(p, n)

)
E
[
1Qδ1(0, Z>2 )~Ξ

−1

−{123}
~Ξ123

~Ξ
−1

−{123}
~Z3δ3

]
= O

(
exp(−cn1/2)poly(p, n)

)
E
[
1Qδ1(0, Z>2 )~Ξ

−1

−{123}
~Ξ123

~Ξ
−1

−{123}
~Ξ123

~Ξ
−1

−{123}
~Z3δ3

]
= O

(
exp(−cn1/2)poly(p, n)

)
E
[
1Qδ1(0, Z>2 )~Ξ

−1

−{123}
~Ξ123

~Ξ
−1

−{123}
~Ξ123

~Ξ
−1

−{123}
~Ξ123

~Ξ
−1 ~Z3δ3

]
≤O

(
p4

n3

)
.

6. Since E[δ̄
2
] = Eδ2

n = τ2

n , we have∣∣∣∣E [1Qδ̄2
]
− τ2

n

∣∣∣∣ =
∣∣∣E1Qc δ̄

2
∣∣∣ ≤√E12

Qc · Eδ̄
4

≤C exp(−cn1/2)poly(n),

(107)

which implies (98).
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7. We can calculate that∣∣∣∣E [1Q ((0, 1nZ
>
)
~Ξ
−1~Z>δ

)2
]
− E

(
(0, 1nZ

>)~Z>δ
)2
∣∣∣∣

≤
∣∣∣∣E [1Q ((0, 1nZ

>)~Ξ
−1~Z>δ

)2
− 1Q

(
(0, 1nZ

>)I~Z>δ
)2
]∣∣∣∣

+

∣∣∣∣E1Qc
(

(0, 1nZ
>)~Z>δ

)2
∣∣∣∣

≤
∣∣∣E [1Q(0, 1nZ

>)(~Ξ
−1 − I)~Z>δ · 1Q(0, 1nZ

>)(~Ξ
−1

+ I)~Z>δ
]∣∣∣

+ E1Qc‖1nZ>‖22 · ‖~Z>δ‖22

≤E1Q‖1nZ>‖22 · ‖~Z>δ‖22‖~Ξ
−1 − I‖ · ‖~Ξ−1

+ I‖+ E1Qc‖1nZ>‖22 · ‖~Z>δ‖22

≤
(
E‖~Z>δ‖32

) 2
3 ·
(
E1Q‖~Ξ

−1 − I‖6‖~Ξ−1
+ I‖6

) 1
6 ·
(
E‖1nZ>‖12

2

) 1
6

+ (E1Qc)
1
6

(
E‖~Z>δ‖32

) 2
3
(
E‖1nZ>‖12

2

) 1
6

≤C(pn)2n−1/4,

(108)

E
(

(0, 1nZ
>)~Z>δ

)2
=

n∑
i,j,k,l=1

(0, Z>i )~Zjδj(0, Z
>
k )~Zlδl

=

n∑
i=1

E
(
Z>i Ziδi

)2
+

∑
1≤i 6=j≤n

(
Z>i ZjδjZ

>
i Zjδj + Z>i ZiδiZ

>
j Zjδj + Z>i ZjδjZ

>
j Ziδi

)
=O

(
np2
)

+ n(n− 1)

(
tr
(
EZiZ>i · EZjδ2

jZ
>
j

)
+
(

tr
(
ZδZ>

))2
+ tr

(
EZδZ>

)2
)

=n2

(
tr(Zδ2Z>) +

(
tr(EZδZ>)

)2
+ ‖tr(EZδZ>)‖2F

)
+O

(
np2
)
.

Combine the two equalities above, we obtain (99). �

Lemma 6.4 (Separate Analysis in proof of Theorem 2.6) Under the setting in The-

orem 2.6, we have

E
n∑

i,j,k=1

X>i β(2) (0, Xj)
>
(
~X> ~X

)−1
~Xkδk1Q = O

(
p2
)
, (109)

E
n∑

i,j,k=1

δi (0, Xj)
>
(
~X> ~X

)−1
~Xkδk1Q = O

(
p2
)
, (110)

E
n+m∑
i=n+1

n∑
j,k=1

(X>i β(2)) (0, Xj)
>
(
~X> ~X

)−1
~Xkδk1Q = 0, (111)
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E
n∑

i,k=1

n+m∑
j=n+1

(
1

m+ n
X>i β(2) +

1

n
δi) (0, Xj)

>
(
~X> ~X

)−1
~Xkδk1Q = 0, (112)

E
n+m∑

i,j=n+1

n∑
k=1

X>i β(2) (0, Xj)
>
(
~X> ~X

)−1
~Xkδk1Q = O

(
p2
)
. (113)

Proof of Lemma 6.4. We first consider (109). By the fact that X1, · · · , Xn are i.i.d.

distributed, we have

E
n∑

i,j,k=1

EX>i β(2) (0, Xj)
>
(
~X> ~X

)−1
~Xkδk1Q

=n(n− 1)(n− 2)EX>1 β(2)(0, X2)>
(
~X> ~X

)−1
~X3δ31Q

+ nEX>1 β(2)(0, X1)>
(
~X> ~X

)−1
~X1δ11Q

+ n(n− 1)EX>1 β(2)(0, X2)>
(
~X> ~X

)−1
~X1δ11Q

+ n(n− 1)EX>1 β(2)(0, X2)>
(
~X> ~X

)−1
~X2δ21Q

+ n(n− 1)EX>1 β(2)(0, X1)>
(
~X> ~X

)−1
~X2δ21Q.

(114)

Note the expansion of

~Ξ
Lemma 6.2

=
(
~Ξ
−1

−{123} − ~Ξ
−1

−{123}
~Ξ123

~Ξ
−1

−{123} + ~Ξ
−1

−{123}
~Ξ123

~Ξ
−1

−{123}
~Ξ123

~Ξ
−1

−{123}

+ ~Ξ
−1

−{123}
~Ξ123

~Ξ
−1

−{123}
~Ξ123

~Ξ
−1

−{123}
~Ξ123

~Ξ
−1
)
,

we have

EX>1 β(2)(0, X2)>
(
~X> ~X

)−1
~X3δ31Q

=
1

n
EX>1 β(2)(0, X2)> ~Ξ

−1

−{123}
~X3δ31Q −

1

n
EX>1 β(2)(0, X2)> ~Ξ

−1

−{123}
~Ξ{123} ~Ξ

−1

−{123}
~X3δ31Q

+
1

n
EX>1 β(2)(0, X2)> ~Ξ

−1

−{123}
~Ξ{123} ~Ξ

−1

−{123}
~Ξ{123} ~Ξ

−1

−{123}
~X3δ31Q

+
1

n
EX>1 β(2)(0, X2)> ~Ξ

−1

−{123}
~Ξ{123} ~Ξ

−1

−{123}
~Ξ{123} ~Ξ

−1

−{123}
~Ξ{123} ~Ξ

−1 ~X3δ31Q.

Similarly to the proof of Lemma 6.3, we can compute that

1

n
EX>1 β(2)(0, X2)> ~Ξ

−1

−{123}
~X3δ31Q −

1

n
EX>1 β(2)(0, X2)> ~Ξ

−1

−{123}
~Ξ{123} ~Ξ

−1

−{123}
~X3δ31Q

+
1

n
EX>1 β(2)(0, X2)> ~Ξ

−1

−{123}
~Ξ{123} ~Ξ

−1

−{123}
~Ξ{123} ~Ξ

−1

−{123}
~X3δ31Q = poly(p, n) exp(−cn1/2),

1

n
EX>1 β(2)(0, X2)> ~Ξ

−1

−{123}
~Ξ{123} ~Ξ

−1

−{123}
~Ξ{123} ~Ξ

−1

−{123}
~Ξ{123} ~Ξ

−1 ~X3δ31Q = O

(
p4

n4

)
.
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Similarly for the other terms in (114), we can compute that

EX>1 β(2)(0, X1)>
(
~X> ~X

)−1
~X1δ11Q =

1

n
EX>1 β(2)(0, X1)> ~Ξ

−1 ~X1δ11Q

=
1

n
EX>1 β(2)(0, X1)>

(
~Ξ
−1

−{1} − ~Ξ
−1

−{1}
~Ξ{1} ~Ξ

−1
)
~X1δ11Q

=O

(
p2

n2

)
,

EX>1 β(2)(0, X2)>
(
~X> ~X

)−1
~X1δ11Q + EX>1 β(2)(0, X2)>

(
~X> ~X

)−1
~X2δ21Q

+ EX>1 β(2)(0, X1)>
(
~X> ~X

)−1
~X2δ21Q = O

(
p3

n3

)
.

Combining the inequalities above, decomposition (114) along with the fact that p = o(n1/2),

we can get (109).

Next, the proofs of (110) and (113) are essentially the same as (109), which we do not

repeat here. The proofs to (111) and (112) follows from the setting that {Xi}n+m
i=n+1 are

with mean zero and independent of {(δi, Xi)}ni=1. �
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